Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 11;10(1):4130.
doi: 10.1038/s41467-019-11576-0.

Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

Alexander Teumer  1   2 Yong Li  3 Sahar Ghasemi  4   5 Bram P Prins  6 Matthias Wuttke  3   7 Tobias Hermle  7 Ayush Giri  8   9 Karsten B Sieber  10 Chengxiang Qiu  11 Holger Kirsten  12   13 Adrienne Tin  14   15 Audrey Y Chu  16 Nisha Bansal  17   18 Mary F Feitosa  19 Lihua Wang  19 Jin-Fang Chai  20 Massimiliano Cocca  21 Christian Fuchsberger  22 Mathias Gorski  23   24 Anselm Hoppmann  3 Katrin Horn  12   13 Man Li  25 Jonathan Marten  26 Damia Noce  22 Teresa Nutile  27 Sanaz Sedaghat  28 Gardar Sveinbjornsson  29 Bamidele O Tayo  30 Peter J van der Most  31 Yizhe Xu  25 Zhi Yu  14   32 Lea Gerstner  7 Johan Ärnlöv  33   34 Stephan J L Bakker  35 Daniela Baptista  36 Mary L Biggs  37   38 Eric Boerwinkle  39 Hermann Brenner  40   41 Ralph Burkhardt  13   42   43 Robert J Carroll  44 Miao-Li Chee  45 Miao-Ling Chee  45 Mengmeng Chen  7 Ching-Yu Cheng  45   46   47 James P Cook  48 Josef Coresh  14 Tanguy Corre  49   50   51 John Danesh  52 Martin H de Borst  35 Alessandro De Grandi  22 Renée de Mutsert  53 Aiko P J de Vries  54 Frauke Degenhardt  55 Katalin Dittrich  56   57 Jasmin Divers  58 Kai-Uwe Eckardt  59   60 Georg Ehret  36 Karlhans Endlich  5   61 Janine F Felix  28   62   63 Oscar H Franco  28   64 Andre Franke  55 Barry I Freedman  65 Sandra Freitag-Wolf  66 Ron T Gansevoort  35 Vilmantas Giedraitis  67 Martin Gögele  22 Franziska Grundner-Culemann  3 Daniel F Gudbjartsson  29 Vilmundur Gudnason  68   69 Pavel Hamet  70   71 Tamara B Harris  72 Andrew A Hicks  22 Hilma Holm  29 Valencia Hui Xian Foo  45 Shih-Jen Hwang  73   74 M Arfan Ikram  28 Erik Ingelsson  75   76   77   78 Vincent W V Jaddoe  28   62   63 Johanna Jakobsdottir  79   80 Navya Shilpa Josyula  81 Bettina Jung  23 Mika Kähönen  82   83 Chiea-Chuen Khor  45   84 Wieland Kiess  13   56   57 Wolfgang Koenig  85   86   87 Antje Körner  13   56   57 Peter Kovacs  88 Holly Kramer  30   89 Bernhard K Krämer  90 Florian Kronenberg  91 Leslie A Lange  92 Carl D Langefeld  58 Jeannette Jen-Mai Lee  20 Terho Lehtimäki  93   94 Wolfgang Lieb  95 Su-Chi Lim  20   96 Lars Lind  97 Cecilia M Lindgren  98   99 Jianjun Liu  84   100 Markus Loeffler  12   13 Leo-Pekka Lyytikäinen  93   94 Anubha Mahajan  101   102 Joseph C Maranville  103   104 Deborah Mascalzoni  22 Barbara McMullen  105 Christa Meisinger  106   107 Thomas Meitinger  86   108   109 Kozeta Miliku  28   62   63 Dennis O Mook-Kanamori  53   110 Martina Müller-Nurasyid  111   112   113 Josyf C Mychaleckyj  114 Matthias Nauck  5   115 Kjell Nikus  116   117 Boting Ning  118 Raymond Noordam  119 Jeffrey O' Connell  120 Isleifur Olafsson  121 Nicholette D Palmer  122 Annette Peters  86   123   124 Anna I Podgornaia  16 Belen Ponte  125 Tanja Poulain  13 Peter P Pramstaller  22 Ton J Rabelink  54   126 Laura M Raffield  127 Dermot F Reilly  16 Rainer Rettig  128 Myriam Rheinberger  23 Kenneth M Rice  38 Fernando Rivadeneira  28   129 Heiko Runz  103   130 Kathleen A Ryan  131 Charumathi Sabanayagam  45   46 Kai-Uwe Saum  40 Ben Schöttker  40   41 Christian M Shaffer  44 Yuan Shi  45   46 Albert V Smith  69 Konstantin Strauch  111   112 Michael Stumvoll  132 Benjamin B Sun  6 Silke Szymczak  66 E-Shyong Tai  20   100   133 Nicholas Y Q Tan  45 Kent D Taylor  134 Andrej Teren  13   135 Yih-Chung Tham  45 Joachim Thiery  13   42 Chris H L Thio  31 Hauke Thomsen  136 Unnur Thorsteinsdottir  29 Anke Tönjes  132 Johanne Tremblay  70   137 André G Uitterlinden  129 Pim van der Harst  138   139   140 Niek Verweij  138 Suzanne Vogelezang  28   62   63 Uwe Völker  5   141 Melanie Waldenberger  86   123   142 Chaolong Wang  84   143 Otis D Wilson  144 Charlene Wong  47 Tien-Yin Wong  45   46   47 Qiong Yang  118 Masayuki Yasuda  45   145 Shreeram Akilesh  18   146 Murielle Bochud  49 Carsten A Böger  23   147 Olivier Devuyst  148 Todd L Edwards  149   150 Kevin Ho  151   152 Andrew P Morris  48   101 Afshin Parsa  153   154 Sarah A Pendergrass  155 Bruce M Psaty  156   157 Jerome I Rotter  134   158   159 Kari Stefansson  29 James G Wilson  160 Katalin Susztak  11 Harold Snieder  31 Iris M Heid  24 Markus Scholz  12   13 Adam S Butterworth  6   161 Adriana M Hung  144   150 Cristian Pattaro  162 Anna Köttgen  163   164
Affiliations

Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

Alexander Teumer et al. Nat Commun. .

Abstract

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.

PubMed Disclaimer

Conflict of interest statement

Karsten B. Sieber is full-time employee of GlaxoSmithKline. Gardar Sveinbjornsson, Daniel F. Gudbjartsson, Hilma Holm, Unnur Thorsteinsdottir and Kari Stefansson are full-time employees of deCODE genetics, Amgen Inc. John Danesh is member of the Novartis Cardiovascular and Metabolic Advisory Board, received grant support from Novartis. Oscar H. Franco works in ErasmusAGE, a center for aging research across the life course funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA. Wolfgang Koenig received modest consultation fees for advisory board meetings from Amgen, DalCor, Kowa, Novartis, Pfizer and Sanofi, and modest personal fees for lectures from Amgen, AstraZeneca, Novartis, Pfizer and Sanofi. Anna I. Podgornaia and Dermot F. Reilly are employees of Merck Sharp Dohme Corp., Whitehouse Station, NJ, USA. Kevin Ho disclosed a research and financial relationship with Sanofi-Genzyme. Bruce M. Psaty serves on the DSMB of a clinical trial funded by the manufacturer (Zoll LifeCor) and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. Markus Scholz: Consultancy of and grant support from Merck Serono not related to this project. Adam S. Butterworth received grants from MSD, Pfizer, Novartis, Biogen and Bioverativ and personal fees from Novartis. Anna Köttgen received grant support from Gruenenthal not related to this project. The other authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Genome-wide association results. The circos plot provides an overview of the association results: Red band: –log10(p) for association in the trans-ethnic meta-analysis of urinary albumin-to-creatinine ratio (UACR), ordered by chromosomal position. The blue line indicates genome-wide significance (p = 5 × 10−8). Black gene labels indicate novel loci, blue labels indicate known loci (known index SNP within ± 500 kb region of current index SNP), gray labels indicate loci not associated with UACR at the nominal significance level (p ≥ 0.05) in the 53 CKDGen cohorts without UKBB. Blue band: –log10(p) for association with microalbuminuria (MA), ordered by chromosomal position. The red line indicates genome-wide significance (p = 5 × 10−8). Green band: measures of heterogeneity related to the UACR-associated index SNPs, where the dot sizes are proportional to two measures of heterogeneity, I² and the –log10(p) for heterogeneity attributed to ancestry (pA)
Fig. 2
Fig. 2
Internal concordance of the urinary albumin-to-creatinine ratio (UACR) results, and association with microalbuminuria, urinary creatinine and albumin. a Comparison of effect estimates of the 59 genome-wide significant trans-ethnic UACR index SNPs in the UKBB (x-axis) and in the CKDGen cohorts without UKBB (y-axis). Blue dots indicate nominal significance (p < 0.05) in the CKDGen cohorts without UKBB, and loci at genome-wide significance (p < 5 × 10−8) in that meta-analysis are labeled with the closest gene. b Comparison of effect estimates of the 59 trans-ethnic UACR index SNPs (x-axis) with their corresponding estimate from the GWAS of microalbuminuria (MA; y-axis). Blue dots indicate significance in the MA results after multiple testing correction (p < 0.05/59 = 8.5 × 10−4), and loci that achieved genome-wide significance (p < 5 × 10−8) for MA are labeled. In both panels, the dashed line represents the line of best fit through the effect estimates. c Comparison of effect estimates of the 59 genome-wide significant trans-ethnic UACR index SNPs for their effect on urinary creatinine (x-axis) and urinary albumin levels (y-axis) in the UKBB sample. Blue, red, and purple color indicate significant associations after multiple testing correction (p < 0.05/59 = 8.5 × 10−4) with urinary creatinine, urinary albumin, and both, respectively. Significant associations are labeled with the closest gene name. The dashed line represents the median y = x. In all panels, error bars indicate 95% confidence intervals (CIs), and the Pearson correlation coefficient r between the effect estimates is shown. The effect directions correspond to the effect allele of the trans-ethnic UACR meta-analysis results
Fig. 3
Fig. 3
Phenome-wide association scan of a genetic urinary albumin-to-creatinine ratio (UACR) risk score. PheWAS association results were obtained from EA participants of the Million Veteran Program. Association test -log10(p-values) are plotted on the y-axis, and the corresponding trait or disease category on the x-axis. Significant results, after correcting for the 1422 phenotypes tested (p < 0.05/1422 = 3.5 × 10−5), are labeled in the figure
Fig. 4
Fig. 4
Genetic correlation of urinary albumin-to-creatinine ratio (UACR) with other traits and diseases. Significant (p < 9.7 × 10−5) genetic correlations based on the genome-wide summary statistics from the EA UACR GWAS and 517 pre-computed and publicly available GWAS summary statistics of UKBB traits and diseases, available through LDHub. Traits are shown on the x-axis, and colored according to broad physiological categories. Genetic correlations between traits and UACR are reported on the y-axis. Dot size is proportional to the –log10(p) of the corresponding genetic correlation
Fig. 5
Fig. 5
Fine-mapping and functional annotation of potentially causal variants. Overview of 995 SNPs with a posterior probability of association with urinary albumin-to-creatinine ratio (UACR) of >1%. The x-axis indicates the 99% credible set size and the y-axis the SNPs’ posterior probability of association. In panel a, missense SNPs are marked by triangles, with size proportional to the SNP CADD score. In panel b, SNPs are color-coded with respect to location in regulatory regions of specific kidney tissues. The labels show the closest gene, and are restricted to variants mapping to small credible sets (≤5 SNPs), or to variants with high individual posterior probability (>0.5) of driving the association signal. For the CUBN locus, a credible set was computed for each independent SNP
Fig. 6
Fig. 6
Co-localization of associations signals for urinary albumin-to-creatinine ratio (UACR) and gene expression in kidney tissues. The plot shows the nine genes for which there is a high likelihood (posterior probability ≥ 80%) of a shared causal signal for gene expression in at least one of three kidney tissues and UACR. The loci are colored-coded and shown on the y-axis with the closest gene next to the index SNP. Co-localization with gene expression across all tissues (x-axis) is shown as dots, where the size of the dots (implying that eQTL data were available) corresponds to the posterior probability of the co-localization. The change in UACR is color-coded relative to the change in gene expression, or gray in case of a posterior probability < 80%
Fig. 7
Fig. 7
Co-localization of association signals of the OAF locus. Regional association plots of the OAF locus in the European ancestry urinary albumin-to-creatinine ratio (UACR) GWAS (a), with OAF gene-expression levels in healthy kidney tissue sections (b), and with OAF plasma levels (c, d). The dots are colored according to their correlation r² with the index SNP estimated based on the 1000 Genomes EUR reference samples (gray for missing data). This locus has two independent pQTLs for OAF levels, where panel c shows the association between the index pQTL at the locus (rs117554512) conditioned on its secondary signal (indexed by rs508205), and panel d shows the association with a conditionally independent SNP (rs508205, r2 < 0.01 in 1000 Genomes EUR). The secondary signal rs508205 has strong evidence of co-localization with the UACR association signal (posterior probability H4 = 0.99, Methods), while the signal rs117554512 has not (posterior probability H4 = 0). There was strong evidence of co-localization between the UACR association signal and OAF expression in kidney tissue (posterior probability H4 = 0.97)
Fig. 8
Fig. 8
In vivo results of Drosophila orthologs. The Drosophila orthologs of OAF and PRKCI (aPKC) are both required for nephrocyte function and aPKC-RNAi affects slit diaphragm formation. a Garland cell nephrocytes were exposed to FITC-albumin. Nephrocytes expressing control RNAi exhibit intense endocytosis, while expression of RNAi directed against oaf and aPKC (ortholog of PRKCI) decreases tracer uptake. b Quantitation of fluorescence intensity from FITC-albumin uptake is shown for the indicated genotypes. Values are presented as mean ± standard deviation of the ratio to a control experiment. Statistical significance was calculated using ANOVA and Dunnett’s post hoc analysis. A statistically significant difference (defined as p < 0.05) is observed for oaf-RNAi-1 (N = 4), oaf-RNAi-2 (N = 3), aPKC-RNAi-1 (N = 3), and aPKC-RNAi-2 (N = 4), where ** indicate p < 0.01 and ***p < 0.001. c Staining the slit diaphragm proteins Sns (ortholog of nephrin) and Kirre (ortholog of NEPH1) in control nephrocytes shows regular formation of slit diaphragms. Airyscan technology partially allows for distinguishing individual slit diaphragms (insets). d Tangential sections through the surface of control nephrocytes reveals the regular fingerprint-like pattern of slit diaphragm proteins. e, f Expression of oaf-RNAi-1 does not entail an overt phenotype, suggesting reduced nephrocyte function may be a consequence of impaired protein reabsorption while slit diaphragm formation is not affected. g, h Expression of aPKC-RNAi-1 results in a clustered and irregular pattern of slit diaphragm proteins (insets in g) and a complete loss of slit diaphragm protein distinct areas on the cell surface. This suggests the loss of nephrocyte function is a consequence of impaired slit diaphragm formation. All scale bars represent 10 µm

References

    1. Hemmelgarn BR, et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA. 2010;303:423–429. doi: 10.1001/jama.2010.39. - DOI - PubMed
    1. Bello AK, et al. Associations among estimated glomerular filtration rate, proteinuria, and adverse cardiovascular outcomes. Clin. J. Am. Soc. Nephrol. 2011;6:1418–1426. doi: 10.2215/CJN.09741110. - DOI - PMC - PubMed
    1. Gansevoort RT, et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011;80:93–104. doi: 10.1038/ki.2010.531. - DOI - PMC - PubMed
    1. Matsushita K, et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2015;3:514–525. doi: 10.1016/S2213-8587(15)00040-6. - DOI - PMC - PubMed
    1. Chronic Kidney Disease Prognosis Consortium et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375:2073–2081. doi: 10.1016/S0140-6736(10)60674-5. - DOI - PMC - PubMed

Publication types