Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct;27(10):1962-1972.
doi: 10.1109/TNSRE.2019.2940485. Epub 2019 Sep 11.

Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection

Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection

Xiaobin Tian et al. IEEE Trans Neural Syst Rehabil Eng. 2019 Oct.

Abstract

Epilepsy is a neurological illness caused by abnormal discharge of brain neurons, where epileptic seizure can lead to life-threatening emergencies. By analyzing the encephalogram (EEG) signals of patients with epilepsy, their conditions can be monitored and seizure can be detected and intervened in time. As the identification of effective features in EEG signals is important for accurate seizure detection, this paper proposes a multi-view deep feature extraction method in attempt to achieve this goal. The method first uses fast Fourier transform (FFT) and wavelet packet decomposition (WPD) to construct the initial multi-view features. Convolutional neural network (CNN) is then used to automatically learn deep features from the initial multi-view features, which reduces the dimensionality and obtain the features with better seizure identification ability. Furthermore, the multi-view Takagi-Sugeno-Kang fuzzy system (MV-TSK-FS), an interpretable rule-based classifier, is used to construct a classification model with strong generalizability based on the deep multi-view features obtained. Experimental studies show that the classification accuracy of the proposed multi-view deep feature extraction method is at least 1% higher than that of common feature extraction methods such as principal component analysis (PCA), FFT and WPD. The classification accuracy is also at least 4% higher than the average accuracy achieved with single-view deep features.

PubMed Disclaimer

Publication types