Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul-Sep;18(3):266-272.
doi: 10.4103/wjnm.WJNM_89_18.

Utility of FET-PET in detecting high-grade gliomas presenting with equivocal MR imaging features

Affiliations

Utility of FET-PET in detecting high-grade gliomas presenting with equivocal MR imaging features

Ameya D Puranik et al. World J Nucl Med. 2019 Jul-Sep.

Abstract

High-grade gliomas, metastases, and primary central nervous system lymphoma (PCNSL) are common high-grade brain lesions, which may have overlapping features on magnetic resonance (MR) imaging. Our objective was to assess the utility of 18-fluoride-fluoro-ethyl-tyrosine positron emission tomography (FET-PET) in reliably differentiating between these lesions, by studying their metabolic characteristics. Patients with high-grade brain lesions suspicious for glioma, with overlapping features for metastases and PCNSL were referred for FET-PET by Neuroradiologists from Multidisciplinary Neuro-Oncology Joint Clinic. Tumor-to-contralateral white mater ratio (T/Wm) at 5 and 20 min was derived and compared to histopathology. Receiver operating characteristic curve analysis was used to find the optimal T/Wm cutoff to differentiate between the tumor types. T/Wm was higher for glial tumors compared to nonglial tumors (metastases, PCNSL, tuberculoma, and anaplastic meningioma). A cutoff of 1.9 was derived to reliably diagnose a tumor of glial origin with a sensitivity and specificity of 93.8% and 91%, respectively. FET-PET can be used to diagnose glial tumors presenting as high-grade brain lesions when MR findings show overlapping features for other common high-grade lesions.

Keywords: Brain lesions; fluoroethyl-tyrosine-positron-emission tomography; high-grage glioma; magnetic resonance imaging.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Region of interest generated over coronal (a), sagittal (b), and axial (c) FET-PET images. Background region of interest drawn over contralateral white mater (d) on axial PET image
Figure 2
Figure 2
Patient 3 was a 55-year-old female, presented with headache for 1 month, axial MR sequences (arrows) show well-circumscribed mass along the occipital horn of left lateral ventricle, (a) iso-to-hypointense on T2-weighted image (b) enhancing on postcontrast T1-weighted image, with (d) restricted diffusion and (e) low apparent diffusion coefficient, hyperperfusion on MR perfusion sequence; MR spectroscopy was noncontributory. Although features were favoring PCNSL, age and rapid clinical deterioration raised the suspicion of glial tumor. Axial FET-PET (c and f) fused PET/CT images (arrows) showed increased tracer uptake in the mass, with a tumor-to-contralateral white mater ratio of 2.6 and 2.2 at 5 and 20 min. Biopsy was suggestive of the WHO Grade IV glioma – glioblastoma
Figure 3
Figure 3
An 86-year-old male (patient 8), known case of chronic kidney disease, presenting with headache and limb weakness, underwent a MRI at a regional center; axial images (a) showed an ill-defined T1 hypointense, T2 iso-to-hypointense corpus callosal lesion infiltrating the ventricles and right thalamus, no contrast could be administered, there was facilitated diffusion on diffusion-weighted imaging and ADC map; hyperperfusion on MR perfusion images differentials of PCNSL and high-grade glioma were given. FET-PET showed tumor-to-contralateral white mater (T/Wm) ratio of 2.6 on both 5 (c) and 20 (d) minute images. 5-min image is an index of vascularity, however, since maximum uptake occurs till 20 min, increased 20-min uptake in the hyperperfused lesions seen at 5 min is suggestive of high-grade glioma. Histopathology revealed Grade IV gliomas
Figure 4
Figure 4
Patient 7 is a 54-year-old male, presented with progressive bilateral diminution of vision and right hemiparesis for 2 months, MRI showed (a) T2-hypointense lesion in the left occipital region, with perilesional edema. (b) Axial postcontrast T1-weighted image showed homogeneous enhancement. MR spectroscopy and perfusion were noncontributory. Differentials were high-grade glioma, PCNSL with rare possibility of metastases. FET-PET was done (c), which showed low-grade uptake in the lesion with a tumor-to-contralateral white mater (T/Wm) ratio of 1.6 at 5 and 20 min. Patient was not willing for biopsy; hence, whole-body FDG PET was done which showed rim of increased uptake in the brain lesion ([d] equal to gray matter), and primary site in the anal canal, seen on maximum intensity projection (MIP) image ([e] – arrow), biopsy showed anal melanoma, thus brain lesion was most likely metastatic. FET-PET (T/Wm) ratio was useful in ruling out high-grade glioma
Figure 5
Figure 5
Patient 12 was a 78-year-old male presented with memory loss, MRI showed well-defined lesion in the left parietal region (arrows), periventricular location, (a) hyperintense on T2 with edema, (b) T1-postcontrast showed minimal enhancement, (c and d) rim of restricted diffusion and low apparent diffusion coefficient, (e) MR spectroscopy showed choline peak with raised Cho/Cr ratio, and MR perfusion imaging showed relative cerebral blood volume of 158.3 suggestive of mild hyperperfusion. Considering the age and overlapping imaging features, differentials of PCNSL, metastases, and high-grade glioma were given. FET-PET showed intense uptake in lesion on axial PET (f) and fused PET/CT (g) images with tumor-to-contralateral white mater (T/Wm) ratio of 2.4 and 2.5 at 5 and 20 min, favoring high-grade glioma. Histopathology was WHO Grade IV glioma – glioblastoma
Figure 6
Figure 6
(a) Box plot and (b) dot plot depicting the tumor-to-white matter (T/Wm) ratio across PCNSL, metastases, glioblastoma, and other lesions
Figure 7
Figure 7
Area under the curve showing a 1.9 tumor-to-white matter (T/Wm) ratio cutoff to differentiate high-grade glial and nonglial high-grade lesions with a sensitivity of 93.8% and specificity of 91%, at 5 min (a) and 20 min (b). ROC: Receiver operating characteristic

References

    1. Chen W, Silverman DH. Advances in evaluation of primary brain tumors. Semin Nucl Med. 2008;38:240–50. - PubMed
    1. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2010–2014. Neuro Oncol. 2017;19:iv1–iv88. - PMC - PubMed
    1. Price SJ. The role of advanced MR imaging in understanding brain tumour pathology. Br J Neurosurg. 2007;21:562–75. - PubMed
    1. Ding Y, Xing Z, Liu B, Lin X, Cao D. Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastases using susceptibility-weighted imaging. Brain Behav. 2014;4:841–9. - PMC - PubMed
    1. Langen KJ, Stoffels G, Filss C, Heinzel A, Stegmayr C, Lohmann P, et al. Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[18F]fluoroethyl)-L-tyrosine (FET) Methods. 2017;130:124–34. - PubMed