Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May;134(3):833-843.
doi: 10.1007/s00414-019-02153-7. Epub 2019 Sep 13.

Detection and analysis of the cause of false-tetra-allelic patterns of locus D10S1435 at the sequence level

Affiliations

Detection and analysis of the cause of false-tetra-allelic patterns of locus D10S1435 at the sequence level

Yongsong Zhou et al. Int J Legal Med. 2020 May.

Abstract

A number of artifacts produced in forensic DNA typing make the interpretation more complicated and even lead to typing errors. Here, we reported the cause of false-tetra-allelic patterns of STR locus D10S1435 at the sequence level. To confirm the true genotyping, the sample with four allelic peaks was re-amplified and sequenced. The amplicon sequences of D10S1435, D20S482, D6S1017, and D10S1248 loci were analyzed by software BioXM and RNAstructure. We successfully reproduced the four-peak phenomenon by adding various concentration of magnesium chloride into the loading mixtures to simulate the suboptimal electrophoresis conditions. The false four allelic peaks may be caused by the specific nucleotide sequence of locus D10S1435 which tends to form secondary structures under the suboptimal electrophoresis conditions. The relatively high GC content and extremely uneven distribution give the amplicon a potency to resist complete denaturation at the phase of sample preparation and a tendency to form intra- and intermolecular secondary structures during post-injection.

Keywords: Artifacts; D10S1435 locus; Electrophoresis; Secondary structure; Sequence analysis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. de Knijff P (2019) From next generation sequencing to now generation sequencing in forensics. Forensic Sci Int Genet 38:175–180. https://doi.org/10.1016/j.fsigen.2018.10.017 - DOI - PubMed
    1. Butler JM, Buel E, Crivellente F, McCord BR (2004) Forensic DNA typing by capillary electrophoresis using the ABI prism 310 and 3100 genetic analyzers for STR analysis. Electrophoresis 25:1397–1412. https://doi.org/10.1002/elps.200305822 - DOI - PubMed
    1. Butler JM (2015) Chapter 3 - STR alleles and amplification artifacts. In: Butler JM (ed) Advanced topics in forensic DNA typing: interpretation. Academic press, San Diego, pp 47–86 - DOI
    1. Fernando P, Evans BJ, Morales JC, Melnick DJ (2001) Electrophoresis artefacts — a previously unrecognized cause of error in microsatellite analysis. Mol Ecol Notes 1:325–328. https://doi.org/10.1046/j.1471-8278.2001.00083.x - DOI
    1. McLaren RS, Ensenberger MG, Budowle B et al (2008) Post-injection hybridization of complementary DNA strands on capillary electrophoresis platforms: a novel solution for dsDNA artifacts. Forensic Sci Int Genet 2:257–273. https://doi.org/10.1016/j.fsigen.2008.03.005 - DOI - PubMed

LinkOut - more resources