Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan;295(1):135-142.
doi: 10.1007/s00438-019-01609-0. Epub 2019 Sep 13.

Promises and pitfalls of whole-exome sequencing exemplified by a nephrotic syndrome family

Affiliations

Promises and pitfalls of whole-exome sequencing exemplified by a nephrotic syndrome family

Mara Sanches Guaragna et al. Mol Genet Genomics. 2020 Jan.

Abstract

High-throughput techniques such as whole-exome sequencing (WES) show promise for the identification of candidate genes that underlie Mendelian diseases such as nephrotic syndrome (NS). These techniques have enabled the identification of a proportion of the approximately 54 genes associated with NS. However, the main pitfall of using WES in clinical and research practice is the identification of multiple variants, which hampers interpretation during downstream analysis. One useful strategy is to evaluate the co-inheritance of rare variants in affected family members. Here, we performed WES of a patient with steroid-resistant NS (SRNS) and intermittent microhematuria. Currently, 15 years after kidney transplantation, this patient presents normal kidney function. The patient was found to be homozygous for a rare MYO1E stop-gain variant, and was heterozygous for rare variants in NS-associated genes, COL4A4, KANK1, LAMB2, ANLN, E2F3, and APOL1. We evaluated the presence or absence of these variants in both parents and 11 siblings, three of whom exhibited a milder phenotype of the kidney disease. Analysis of variant segregation in the family, indicated the MYO1E stop-gain variant as the putative causal variant underlying the kidney disease in the patient and two of her affected sisters. Two secondary variants in COL4A4-identified in some other affected family members-require further functional studies to determine whether they play a role in the development of microhematuria in affected family members. Our data illustrate the difficulties in distinguishing the causal pathogenic variants from incidental findings after WES-based variant analysis, especially in heterogenous genetic conditions, such as NS.

Keywords: Incidental findings; Kidney disease; MYO1E; Steroid-resistant nephrotic syndrome; Stop-gain variant; Whole-exome sequencing.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Al-Hamed MH, Al-Sabban E, Al-Mojalli H et al (2013) A molecular genetic analysis of childhood nephrotic syndrome in a cohort of Saudi Arabian families. J Hum Genet 58:480–489 - DOI
    1. Barker D, Hostikka S, Zhou J, Chow L, Oliphant A, Gerken S, Gregory M, Skolnick M, Atkin C, Tryggvason K (1990) Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248(4960):1224–1227 - DOI
    1. Benoit G, Machuca E, Antignac C (2010) Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr Nephrol 25:1621–1632. https://doi.org/10.1007/s00467-010-1495-0 - DOI - PubMed - PMC
    1. Bierzynska A, McCarthy HJ, Soderquest K et al (2017a) Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 91:937–947. https://doi.org/10.1016/j.kint.2016.10.013 - DOI - PubMed
    1. Bierzynska A, Soderquest K, Dean P et al (2017b) MAGI2 mutations cause congenital nephrotic syndrome. J Am Soc Nephrol 28:1614–1621. https://doi.org/10.1681/ASN.2016040387 - DOI - PubMed

LinkOut - more resources