Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Nov;68(11):1573-1584.
doi: 10.1099/jmm.0.001063. Epub 2019 Sep 13.

Polymicrobial oral biofilm models: simplifying the complex

Affiliations
Free article
Review

Polymicrobial oral biofilm models: simplifying the complex

Jason L Brown et al. J Med Microbiol. 2019 Nov.
Free article

Abstract

Over the past century, numerous studies have used oral biofilm models to investigate growth kinetics, biofilm formation, structure and composition, antimicrobial susceptibility and host-pathogen interactions. In vivo animal models provide useful models of some oral diseases; however, these are expensive and carry vast ethical implications. Oral biofilms grown or maintained in vitro offer a useful platform for certain studies and have the advantages of being inexpensive to establish and easy to reproduce and manipulate. In addition, a wide range of variables can be monitored and adjusted to mimic the dynamic environmental changes at different sites in the oral cavity, such as pH, temperature, salivary and gingival crevicular fluid flow rates, or microbial composition. This review provides a detailed insight for early-career oral science researchers into how the biofilm models used in oral research have progressed and improved over the years, their advantages and disadvantages, and how such systems have contributed to our current understanding of oral disease pathogenesis and aetiology.

Keywords: biofilms; dental plaque; host–pathogen interactions; oral biofilm models; oral microbiology.

PubMed Disclaimer