Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 27;4(11):14503-14510.
doi: 10.1021/acsomega.9b01684. eCollection 2019 Sep 10.

Cobalt(II) Diphenylazodioxide Complexes Induce Apoptosis in SK-HEP-1 Cells

Affiliations

Cobalt(II) Diphenylazodioxide Complexes Induce Apoptosis in SK-HEP-1 Cells

Norah J Alghamdi et al. ACS Omega. .

Abstract

The cobalt(II) complex salts [Co(bpy)(az)2](PF6)2 and [Co(az)4](PF6), each bearing the unusual cis-N,N'-diphenylazodioxide ligand, were both screened as possible anticancer agents against SK-HEP-1 liver cancer cells. Both compounds were found to induce substantial apoptosis as an increasing function of concentration and time. Measurement of apoptosis-related proteins indicated that both the extrinsic and intrinsic pathways of apoptosis were activated. The apoptotic activity induced by these salts is not displayed either by simple cobalt(II) salts or complexes or by the free nitrosobenzene ligand. Additionally, these compounds did not induce apoptosis, as assessed by poly(adenosine diphosphate-ribose) polymerase cleavage, in several other cell lines.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Structures of Cobalt(II) Azodioxide Complexes 1 and 2
Figure 1
Figure 1
Cell morphology after treatment with compound 1 for 12 h.
Figure 2
Figure 2
Cell morphology after treatment with compound 2 for 12 h.
Figure 3
Figure 3
Flow cytometry results for treatment with compounds 1 and 2 (10 μM, 12 h).
Figure 4
Figure 4
Concentration-dependent protein levels after 12 h of treatment with compounds 1 or 2.
Figure 5
Figure 5
Time-dependent protein levels after treatment with compounds 1 or 2 at 2 μM concentration.
Figure 6
Figure 6
Effect of compounds 1 and 2 on ROS levels in SK-HEP-1 cells.
Figure 7
Figure 7
Effect of starting materials and Co(phen)Cl2 (12 h, 10 μM) on PARP cleavage.

References

    1. Rosenberg B.; VanCamp L.; Trosko J. E.; Mansour V. H. Platinum Compounds: a New Class of Potent Antitumour Agents. Nature 1969, 222, 385–386. 10.1038/222385a0. - DOI - PubMed
    1. Bruijnincx P. C. A.; Sadler P. J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol. 2008, 12, 197–206. 10.1016/j.cbpa.2007.11.013. - DOI - PMC - PubMed
    2. Brujinincx P. C. A.; Sadler P. J. Controlling Platinum, Ruthenium, and Osmium Reactivity for Anticancer Drug Design. Adv. Inorg. Chem. 2009, 61, 1–61. 10.1016/S0898-8838(09)00201-3. - DOI - PMC - PubMed
    3. Arnesano F.; Natile G. Mechanistic insight into the cellular uptake and processing of cisplatin 30 years after its approval by FDA. Coord. Chem. Rev. 2009, 253, 2070–2081. 10.1016/j.ccr.2009.01.028. - DOI
    4. Jungwirth U.; Kowol C. R.; Keppler B. K.; Hartinger C. G.; Berger W.; Heffeter P. Anticancer Activity of Metal Complexes: Involvement of Redox Processes. Antioxid. Redox Signaling 2011, 15, 1085–1127. 10.1089/ars.2010.3663. - DOI - PMC - PubMed
    1. Chakrabortty S.; Agrawalla B. K.; Stumper A.; Vegi N. M.; Fischer S.; Reichardt C.; Kögler M.; Dietzek B.; Feuring-Buske M.; Buske C.; Rau S.; Weil T. Mitochondria Targeted Protein-Ruthenium Photosensitizer for Efficient Photodynamic Applications. J. Am. Chem. Soc. 2017, 139, 2512–2519. 10.1021/jacs.6b13399. - DOI - PMC - PubMed
    2. Jarman P. J.; Noakes F.; Fairbanks S.; Smitten K.; Griffiths I. K.; Saeed H. K.; Thomas J. A.; Smythe C. Exploring the Cytotoxicity, Uptake, Cellular Response, and Proteomics of Mono- and Dinuclear DNA Light-Switch Complexes. J. Am. Chem. Soc. 2019, 141, 2925–2937. 10.1021/jacs.8b09999. - DOI - PubMed
    1. Yang G.-J.; Zhong H.-J.; Ko C.-N.; Wong S.-Y.; Vellaisamy K.; Ye M.; Ma D.-L.; Leung C.-H. Identification of a rhodium(III) complex as a Wee1 inhibitor against TP53-mutated triple-negative breast cancer cells. Chem. Commun. 2018, 54, 2463–2466. 10.1039/C7CC09384E. - DOI - PubMed
    2. Yang G.-J.; Wang W.; Mok S. W. F.; Wu C.; Law B. Y. K.; Miao X.-M.; Wu K.-J.; Zhong H.-J.; Wong C.-Y.; Wong V. K. W.; Ma D.-L.; Leung C.-H. Selective Inhibition of Lysine-Specific Demethylase 5A (KDM5A) Using a Rhodium(III) Complex for Triple-Negative Breast Cancer Therapy. Angew. Chem., Int. Ed. 2018, 57, 13091–13095. 10.1002/anie.201807305. - DOI - PubMed
    1. Kang T.-S.; Wang W.; Zhong H.-J.; Dong Z.-Z.; Huang Q.; Mok S. W. F.; Leung C.-H.; Wong V. K. W.; Ma D.-L. An anti-prostate cancer benzofuran-conjugated iridium(III) complex as a dual inhibitor of STAT3 and NF-κB. Cancer Lett. 2017, 396, 76–84. 10.1016/j.canlet.2017.03.016. - DOI - PubMed
    2. Wang W.; Vellaisamy K.; Li G.; Wu C.; Ko C.-N.; Leung C.-H.; Ma D.-L. Development of a Long-Lived Luminescence Probe for Visualizing β-Galactosidase in Ovarian Carcinoma Cells. Anal. Chem. 2017, 89, 11679–11684. 10.1021/acs.analchem.7b03114. - DOI - PubMed
    3. Wu C.; Wu K.-J.; Liu J.-B.; Zhou X.-M.; Leung C.-H.; Ma D.-L. A dual-functional molecular strategy for in situ suppressing and visualizing of neuraminidase in aqueous solution using iridium(III) complexes. Chem. Commun. 2019, 55, 6353–6356. 10.1039/C9CC02189B. - DOI - PubMed

LinkOut - more resources