Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 18;14(9):e0221521.
doi: 10.1371/journal.pone.0221521. eCollection 2019.

Prediction of cardiovascular disease risk among people with severe mental illness: A cohort study

Affiliations

Prediction of cardiovascular disease risk among people with severe mental illness: A cohort study

Ruth Cunningham et al. PLoS One. .

Abstract

Objective: To determine whether contemporary sex-specific cardiovascular disease (CVD) risk prediction equations underestimate CVD risk in people with severe mental illness from the cohort in which the equations were derived.

Methods: We identified people with severe mental illness using information on prior specialist mental health treatment. This group were identified from the PREDICT study, a prospective cohort study of 495,388 primary care patients aged 30 to 74 years without prior CVD that was recently used to derive new CVD risk prediction equations. CVD risk was calculated in participants with and without severe mental illness using the new equations and the predicted CVD risk was compared with observed risk in the two participant groups using survival methods.

Results: 28,734 people with a history of recent contact with specialist mental health services, including those without a diagnosis of a psychotic disorder, were identified in the PREDICT cohort. They had a higher observed rate of CVD events compared to those without such a history. The PREDICT equations underestimated the risk for this group, with a mean observed:predicted risk ratio of 1.29 in men and 1.64 in women. In contrast the PREDICT algorithm performed well for those without mental illness.

Conclusions: Clinicians using CVD risk assessment tools that do not include severe mental illness as a predictor could by underestimating CVD risk by about one-third in men and two-thirds in women in this patient group. All CVD risk prediction equations should be updated to include mental illness indicators.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Flow diagram for selection of cohort aged 30–74 without prior CVD from the PREDICT data set.
Maximum follow up time was 12.2 years, and the mean follow up time was 4.5 years. Because comprehensive routine national data on deaths and hospitalisations was used for follow up there was no loss to follow up, except for people who left the country.
Fig 2
Fig 2. Age adjusted time to event plots of risk of cardiovascular event by prior mental illness (SMI), limited to people aged 30–74 years at index assessment with no prior CVD, dashed lines indicate 95% confidence limits (n = 430241, events = 17197).
Fig 3
Fig 3. Age adjusted time to event plots of risk of cardiovascular event across three categories of prior mental illness (SMI), limited to people aged 30–74 years at index assessment with no prior CVD, dashed lines indicate 95% confidence limits (n = 430241, events = 17197).
Fig 4
Fig 4
Predicted vs observed CVD risk among people aged 30–74 years with no prior CVD, with SMI (left), and without SMI (right) Error bars indicate 95% confidence limits. Blue diagonal line indicates observed = predicted risk (n = 426911, events = 16289).
Fig 5
Fig 5
Predicted vs observed CVD risk among men (left) and women (right) with history of prior mental illness (SMI) in the five years prior to index assessment. Error bars indicate 95% confidence limits. Blue diagonal line indicates observed = predicted risk (n = 18055, events = 680).

References

    1. Correll CU, Solmi M, Veronese N, Bortolato B, Rosson S, Santonastaso P, et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry. 2017;16(2):163–80. 10.1002/wps.20420 - DOI - PMC - PubMed
    1. Cunningham R, Peterson D, Sarfati D, Stanley J, Collings S. Premature mortality in adults using New Zealand psychiatric services. New Zealand Medical Journal. 2014;127(1394). - PubMed
    1. Ruggeri M, Leese M, Thornicroft G, Bisoffi G, Tansella M. Definition and prevalence of severe and persistent mental illness. Br J Psychiatry. 2000;177(2):149–55. - PubMed
    1. De Hert Ms, Correll CU, Bobes J, Cetkovich-Bakmas M, Cohen D, Asai I, et al. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry. 2011;10(1):52–77. - PMC - PubMed
    1. Cook BL, Wayne GF, Kafali EN, Liu Z, Shu C, Flores M. Trends in smoking among adults with mental illness and association between mental health treatment and smoking cessation. JAMA. 2014;311(2):172–82. 10.1001/jama.2013.284985 - DOI - PMC - PubMed

Publication types