Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2019 Sep 18;14(9):e0221826.
doi: 10.1371/journal.pone.0221826. eCollection 2019.

Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross

Affiliations
Comparative Study

Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross

Ajay Kumar et al. PLoS One. .

Abstract

The genetic gain in yield and quality are two major targets of wheat breeding programs around the world. In this study, a high density genetic map consisting of 10,172 SNP markers identified a total of 43 genomic regions associated with three quality traits, three yield traits and two agronomic traits in hard red spring wheat (HRSW). When compared with six grain shape and size traits, the quality traits showed mostly independent genetic control (~18% common loci), while the yield traits showed moderate association (~53% common loci). Association of genomic regions for grain area (GA) and thousand-grain weight (TGW), with yield suggests that targeting an increase in GA may help enhancing wheat yield through an increase in TGW. Flour extraction (FE), although has a weak positive phenotypic association with grain shape and size, they do not share any common genetic loci. A major contributor to plant height was the Rht8 locus and the reduced height allele was associated with significant increase in grains per spike (GPS) and FE, and decrease in number of spikes per square meter and test weight. Stable loci were identified for almost all the traits. However, we could not find any QTL in the region of major known genes like GPC-B1, Ha, Rht-1, and Ppd-1. Epistasis also played an important role in the genetics of majority of the traits. In addition to enhancing our knowledge about the association of wheat quality and yield with grain shape and size, this study provides novel loci, genetic information and pre-breeding material (combining positive alleles from both parents) to enhance the cultivated gene pool in wheat germplasm. These resources are valuable in facilitating molecular breeding for wheat quality and yield improvement.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Frequency distribution of 160 RILs of ND 705 (elite genotype) and PI 414566 (non-adapted genotype) population for mean of eight quality, yield and agronomic traits evaluated over four environments.
The mean of the parental genotypes in different environments is indicated by a circle (ND 705) and a triangle (PI 414566).
Fig 2
Fig 2. Phenotypic correlations for quality, yield, agronomic and grain shape and size traits in ND 705 (elite genotype) × PI 414566 (non-adapted genotype) RIL population.
FE = Flour extraction (%), GPC = Grain protein content (%), GH = Grain hardness (HI), GY = Grain yield (kg ha-1), SPMS = No of spikes m2, GPS = No of Grains per spike, DH = Days to heading (d), PH = Plant height (cm), GH = Grain length, GW = Grain width, GA = Grain area, GLWR = Grain length width ratio, TGW = Thousand grain weight, TW = Test weight.

Similar articles

Cited by

References

    1. Kulwal P, Kumar N, Kumar A, Balyan HS, Gupta PK. Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr Genomic. 2005; 5:254–259. - PubMed
    1. Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F et al. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics. 2007; 277: 31–42. 10.1007/s00438-006-0166-0 - DOI - PubMed
    1. Kumar A, Elias EM, Gavami F, Xu X, Jain S, Manthey FA, et al. A major QTL for gluten strength in durum wheat (Triticum turgidum L. var. durum). J Cereal Science. 2013; 57: 21–29.
    1. Liu G, Zhao Y, Gowda M, Longin CFH, Reif JC, Mette MF. Predicting hybrid performances for quality traits through genomic-assisted approaches in central European wheat. PLoS One. 2016; 11:e0158635 10.1371/journal.pone.0158635 - DOI - PMC - PubMed
    1. Oury F, Chiron H, Pichon M, Giraud A, Bérard P, Faye A, et al. Reliability of indirect selection in determining the quality of bread wheat for French bread-baking. Agronomie. 1999; 19: 621–634.

Publication types