Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019;25(31):3390-3405.
doi: 10.2174/1381612825666190911160244.

Current Computational Approaches for the Development of Anti-HIV Inhibitors: An Overview

Affiliations
Review

Current Computational Approaches for the Development of Anti-HIV Inhibitors: An Overview

Umesh Panwar et al. Curr Pharm Des. 2019.

Abstract

Background: Today, HIV-1 infection has become an extensive problem to public health and a greater challenge to all working researchers throughout the world. Since the beginning of HIV-1 virus, several antiviral therapeutic agents have been developed at various stages to combat HIV-1 infection. But, many of antiviral drugs are on the platform of drug resistance and toxicology issues, needs an urgent constructive investigation for the development of productive and protective therapeutics to make an improvement of individual life suffering with viral infection. As developing a novel agent is very costly, challenging and time taking route in the recent times.

Methods: The review summarized about the modern approaches of computational aided drug discovery to developing a novel inhibitor within a short period of time and less cost.

Results: The outcome suggests on the premise of reported information that the computational drug discovery is a powerful technology to design a defensive and fruitful therapeutic agents to combat HIV-1 infection and recover the lifespan of suffering one.

Conclusion: Based on survey of the reported information, we concluded that the current computational approaches is highly supportive in the progress of drug discovery and controlling the viral infection.

Keywords: AIDS; HIV-1 life cycle; anti-HIV; biological targets; computational drug discovery; drugs; virtual screening..

PubMed Disclaimer

Publication types

Substances