Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 18;24(18):3391.
doi: 10.3390/molecules24183391.

Isothioureas, Ureas, and Their N-Methyl Amides from 2-Aminobenzothiazole and Chiral Amino Acids

Affiliations

Isothioureas, Ureas, and Their N-Methyl Amides from 2-Aminobenzothiazole and Chiral Amino Acids

Itzia I Padilla-Martínez et al. Molecules. .

Abstract

In this investigation, the reaction of 2-dithiomethylcarboimidatebenzothiazole with a series of six chiral amino-acids was studied. The reaction proceeds through the isolable sodium salt of SMe-isothiourea carboxylates as intermediates, whose reaction with methyl iodide in stirring DMF as solvent affords SMe-isothiourea methyl esters. The presence of water in the reaction leads to the corresponding urea carboxylates as isolable intermediates, whose methyl esters were obtained. Finally, the urea N-methyl amide derivatives were isolated when SMe-isothiourea or urea methyl esters were reacted with methylamine in the presence of water. The structures of synthesized compounds were established by 1H and 13C nuclear magnetic resonance and the structures of SMe-isothiourea methyl esters derived from (l)-glycine, (l)-alanine, (l)-phenylglycine, and (l)-leucine, by X-ray diffraction analysis. This methodology allows to functionalize 2-aminobenzothiazole with SMe-isothiourea, urea, and methylamide groups derived from chiral amino acids to get benzothiazole derivatives containing coordination sites and hydrogen bonding groups. Further research on the biological activities of some of these derivatives is ongoing.

Keywords: 2-aminobenzothiazole; 2-dithiomethylcarboimidatebenzothiazole; S-methyl-isothioureas; urea-carboxylate methyl esters and urea N-methyl amides; α-amino-acids.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1
Dithiomethylcarboimidatebenzothiazole 2, SMe-isothioureas 3 and guanidines 4 starting from 2-aminobenzothiazole 1.
Scheme 2
Scheme 2
Generation of sodium carboxylates C from neutral amino acids A.
Scheme 3
Scheme 3
Synthesis of SMe-isothiourea carboxylates 5af, isourea-carboxylates 6af, their corresponding methyl esters 8af, 9e,f, 10af, and 12e,f, isourea-amides 11af and urea-amides 13e,f derived from benzothiazole and amino acids.
Scheme 4
Scheme 4
Sygmatropic rearrangement of compound 2. The numbers on the atoms are the 1H and 13C chemical shifts in CDCl3.
Figure 1
Figure 1
1H and 13C NMR data in CDCl3 of compounds 9e, 9f, and 9f HI.
Figure 2
Figure 2
1H and 13C NMR data in CDCl3 of urea carboxylate methyl esters 12e, 12f, and their corresponding urea NMe amides 13e, 13f.
Figure 3
Figure 3
X-ray diffraction structure of compound 8a. Bond lengths (Å): S(1)–C(2) 1.7624(1), S(1)–C(8) 1.7342(1), S(23)–C(11) 1.7599(1), S(23)–C(24) 1.7927(1), N(3)–C(2) 1.3115(1), N(3)–C(9) 1.3855(1), N(10)–C(2) 1.3621(1), N(10)–C(11) 1.3104(1), N(12)–C(11) 1.3308(1), N(12)–C(13) 1.4402(1), O(14)–C(14) 1.1936(1), O(15)–C(14) 1.3291(1), O(15)–C(16) 1.4530(1). Bond angles (Deg.): C(2)–S(1)–C(8) 89.25(1), C(11)–S(23)–C(24) 1102.17(1).Torsion angles (Deg.): S(23)–C(11)–N(10)–C(2) 179.34(1), N(10)–C(11)–S(23)–C(24) −6.18(1), N(10)–C(11)–N(12)–C(13) 178.17(1), N(12)–C(13)–C(14)–O(14) 2.25(1), N(12)–C(13)–C(14)–O(15) −177.67(1), O(14)–C(14)–O(15)–C(16) 0.25(1).
Figure 4
Figure 4
X-ray diffraction structure of compound 8c. Bond length (Å): S(1)–C(2) 1.753(2), N(3)–C(2) 1.301(3), N(10)–C(2) 1.372(3), N(10)–C(11) 1.306(3), N(12)–C(11) 1.338(3), N(12)–C(13) 1.452(3), S(23)–C(11) 1.770(2). Bond angles (Deg.): S(1)–C(2)–N(10) 115.55(16), N(3)–C(2)–N(10) 129.2 (2), C(2)–N(10)–C(11) 120.36(17), N(10)–C(11)–N(12) 126.08(18). Torsion angles (Deg.): N(3)–C(2)–N(10)–C(11) −1.25, C(24)–S(23)–C(11)–N(10) 1.41(19), C(24)–S(23)–C(11)–N(12) −179.90(17), N(12)–C(13)–C(14)–O(14) 6.2(3), C(16)–O(15)–C(14)–O(14) −0.1(4).
Figure 5
Figure 5
X-ray diffraction structure of compound 8b. Bond Lengths (Å): S(1)–C(2) 1.7618(1), S(1)–C(8) 1.7300(1), S(23)–C(11) 1.7667(1), S(23)–C(24) 1.7919(1), O(14)–C(14) 1.1870(1), O(15)–C(14) 1.3134(1), O(15)–C(16) 1.4522(1), N(3)–C(2) 1.2954(1), N(3)–C(9) 1.3912(1), N(10)–C(2) 1.3592(1), N(10)–C(11) 1.3043(1), N(12)–C(11) 1.3295(1), N(12)–C(13) 1.4527(1). Bond Angles (Deg.): C(2)–S(1)–C(8) 89.62(1), C(11)–S(23)–C(24) 101.25(1). Torsion angles (Deg.): N(3)–C(2)–S(1)–C(8) –0.35(1), N(10)–C(2)–S(1)–C(8) 179.59(1), S(1)–C(2)–N(3)–C(9) 0.18(1), N(10)–C(2)–N(3)–C(9) −179.74(1), S(1)–C(2)–N(10)–C(11) −177.17(1), N(3)–C(2)–N(10)–C(11) 2.75(1), N(10)–C(11)–S(23)–C(24) 5.19(1), N(12)–C(11)–S(23)–C(24) −173.79(1), S(23)–C(11)–N(10)–C(2) 179.27(1), N(12)–C(11)–N(10)–C(2) −1.88(1), S(23)–C(11)–N(12)–C(13) 0.16(1), N(10)–C(11)–N(12)–C(13) −178.71(1), C(14)–C(13)–N(12)–C(11) −85.82(1), C(17)–C(13)–N(12)–C(11) 147.32(1), C(17)–C(13)–C(14)–O(14) 140.21(1).
Figure 6
Figure 6
X-ray diffraction structure of compound 9f. Bond Lengths (Å). S1–C2 1.757(5), S1–C8 1.748(5), S12–C11 1.766(5), S12–C13 1.790(5), O16–C16 1.200(7), O17–C16 1.336(6), O17–C18 1.457(8), N3–C2 1.360(5), N3–C9 1.388(6), N3–C23 1.463(6), N10–C2 1.309(6), N10–C11 1.369(5), N14–C11 1.283(6), N14–C15 1.461(6), C4–C5 1.374(8). Torsion angles (Deg.): N3–C2–S1–C8 −2.4(4), N10–C2–S1–C8 175.6(5), S1–C2–N3–C9 2.3(5), S1–C2–N3–C23 −178.2(4), N10–C2–N3–C9 −175.8(4), N10–C2–N3–C23 3.6(7), S1–C2–N10–C11 2.1(7), N3–C2–N10–C11 179.9(4), N10–C11–S12–C13 −5.6(4), N14–C11–S12–C13 175.1(4), S12–C11–N10–C2 −169.8(4), N14–C11–N10–C2 9.6(7), S12–C11–N14–C15 −2.3(6), N10–C11–N14–C15 178.5(4), C16–C15–N14–C11 −70.1(5), C19–C15–N14–C11 169.6(4), N14–C15–C19–C20 −66.1(6).

Similar articles

Cited by

References

    1. Borthwick A.D., Davies D.E., Ertl P.F., Exall A.M., Haley T.M., Hart G.J., Jackson D.L., Parry N.R., Patikis A., Trivedi N., et al. Design and synthesis of pyrrolidine-5,5′-trans-lactams (5-oxo-hexahydropyrrolo [3, 2-b] pyrroles) as novel mechanism-based inhibitors of human cytomegalovirus protease. 4. Antiviral activity and plasma stability. J. Med. Chem. 2003;46:4428–4449. doi: 10.1021/jm030810w. - DOI - PubMed
    1. Akhtar T., Hameed S., Al-Masoudi N.A., Loddo R., La Colla P. In vitro antitumor and antiviral activities of new benzothiazoles and 1,3,4-oxadiazole-2-tione derivatives. Acta Pharm. 2008;58:135–149. doi: 10.2478/v10007-008-0007-2. - DOI - PubMed
    1. Ke S., Wei Y., Ziwen Y., Wang K., Liang Y., Shi L. Novel cycloalkylthiophene–imine derivatives bearing benzothiazole scaffold: Synthesis, characterization and antiviral activity evaluation. Bioorg. Med. Chem. Lett. 2013;23:5131–5134. doi: 10.1016/j.bmcl.2013.07.023. - DOI - PubMed
    1. Haydon D.J., Stokes N.R., Ure R., Galbraith G., Bennett J.M., Brown D.R., Baker P.J., Barynin V.V., Rice D.W., Sedelnikova S.E., et al. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science. 2008;321:1673–1675. doi: 10.1126/science.1159961. - DOI - PubMed
    1. Saeed A., Rafique H., Hameed A., Rasheed S. Synthesis and antibacterial activity of some new 1-aroyl-3-(substituted-2-benzothiazolyl)thio-ureas. Pharm. Chem. J. 2008;42:191–195.

MeSH terms

LinkOut - more resources