Requirement for scleraxis in the recruitment of mesenchymal progenitors during embryonic tendon elongation
- PMID: 31540914
- PMCID: PMC6826031
- DOI: 10.1242/dev.182782
Requirement for scleraxis in the recruitment of mesenchymal progenitors during embryonic tendon elongation
Abstract
The transcription factor scleraxis (Scx) is required for tendon development; however, the function of Scx is not fully understood. Although Scx is expressed by all tendon progenitors and cells, only long tendons are disrupted in the Scx-/- mutant; short tendons appear normal and the ability of muscle to attach to skeleton is not affected. We recently demonstrated that long tendons are formed in two stages: first, by muscle anchoring to skeleton via a short tendon anlage; and second, by rapid elongation of the tendon in parallel with skeletal growth. Through lineage tracing, we extend these observations to all long tendons and show that tendon elongation is fueled by recruitment of new mesenchymal progenitors. Conditional loss of Scx in mesenchymal progenitors did not affect the first stage of anchoring; however, new cells were not recruited during elongation and long tendon formation was impaired. Interestingly, for tenocyte recruitment, Scx expression was required only in the recruited cells and not in the recruiting tendon. The phenotype of Scx mutants can thus be understood as a failure of tendon cell recruitment during tendon elongation.
Keywords: Mouse; Musculoskeletal; Scleraxis; Tendon development.
© 2019. Published by The Company of Biologists Ltd.
Conflict of interest statement
Competing interestsThe authors declare no competing or financial interests.
Figures







References
-
- Akiyama H., Kim J.-E., Nakashima K., Balmes G., Iwai N., Deng J. M., Zhang Z., Martin J. F., Behringer R. R., Nakamura T. et al. (2005). Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc. Natl. Acad. Sci. USA 102, 14665-14670. 10.1073/pnas.0504750102 - DOI - PMC - PubMed
-
- Blitz E., Viukov S., Sharir A., Shwartz Y., Galloway J. L., Pryce B. A., Johnson R. L., Tabin C. J., Schweitzer R. and Zelzer E. (2009). Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev. Cell 17, 861-873. 10.1016/j.devcel.2009.10.010 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases