Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec:100:158-172.
doi: 10.1016/j.actbio.2019.09.028. Epub 2019 Sep 19.

Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue

Affiliations

Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue

Eun Mi Kim et al. Acta Biomater. 2019 Dec.

Abstract

Cell spheroids as building blocks for engineering micro-tissue should be able to mimic the complex structure of natural tissue. However, control of the distribution of multiple cell populations within cell spheroids is difficult to achieve with current spheroid-harvest methods such as hanging-drop and with the use of microwell plates. In this study, we report the fabrication of core-shell spheroids with the ultimate goal to form 3D complex micro-tissue. We used endothelial cells and two types of stem cells (human turbinate mesenchymal stem cells (hTMSCs)/adipose-derived stem cells (ADSCs)). The stem cells and endothelial cells formed layered micro-sized cell sheets (µCSs) on polydopamine micro-patterned temperature-responsive hydrogel surfaces by a sequential seeding method, and these layered µCSs self-assembled to form core-shell spheroids by expansion of the hydrogels. The co-cultured spheroids formed a core-shell structure irrespective of stem cell type. In addition, the size of the core-shell spheroids was controlled from 90 ± 1 to 144 ± 3 µm by changing pattern sizes (200, 300, and 400 µm). The shell thickness gradually increased from 12 ± 3 to 30 ± 6 µm by adjusting the endothelial cell seeding density. Finally, we fabricated the micro-tissue by fusion of the co-cultured spheroids, and the spheroids with the core-shell structure rapidly induced in vitro vessel-like network in 3 days. Thus, the position of endothelial cells in co-cultured spheroids may be an important factor for the modulation of the vascularization process, which can be useful for the production of 3D complex micro-tissues using spheroids as building blocks. STATEMENT OF SIGNIFICANCE: This manuscript describes our work on the fabrication of core-shell spheroids as building blocks to form 3D complex vascularized micro-tissue. Stem cells (human turbinate mesenchymal stem cells (hTMSCs) or adipose-derived stem cells (ADSCs)) and endothelial cells formed layered micro-sized cell sheets (µCSs) on micro-patterned temperature-responsive hydrogel surfaces by a sequential seeding method, and these layered µCSs self-assembled to form core-shell spheroids (core - stem cells, shell - endothelial cells), irrespective of stem cell type. In addition, the size and shell thickness of the core-shell spheroids were controlled by modifying pattern size and endothelial cell seeding density. We fabricated the vascularized micro-tissue by fusion of the spheroids and demonstrated that the spheroids with a core-shell structure rapidly induced vessel-like network.

Keywords: 3D complex micro-tissue; Cell spheroid; Co-cultured spheroid; Core-shell structure; Vascularization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources