Challenges in Exosome Isolation and Analysis in Health and Disease
- PMID: 31546622
- PMCID: PMC6801453
- DOI: 10.3390/ijms20194684
Challenges in Exosome Isolation and Analysis in Health and Disease
Abstract
A growing body of evidence emphasizes the important role exosomes in different physiological and pathological conditions. Exosomes, virus-size extracellular vesicles (EVs), carry a complex molecular cargo, which is actively processed in the endocytic compartment of parental cells. Exosomes carry and deliver this cargo to recipient cells, serving as an intercellular communication system. The methods for recovery of exosomes from supernatants of cell lines or body fluids are not uniformly established. Yet, studies of the quality and quantity of exosome cargos underlie the concept of "liquid biopsy." Exosomes are emerging as a potentially useful diagnostic tool and a predictor of disease progression, response to therapy and overall survival. Although many novel approaches to exosome isolation and analysis of their cargos have been introduced, the role of exosomes as diagnostic or prognostic biomarkers of disease remains unconfirmed. This review considers existing challenges to exosome validation as disease biomarkers. Focusing on advantages and limitations of methods for exosome isolation and characterization, approaches are proposed to facilitate further progress in the development of exosomes as biomarkers in human disease.
Keywords: biomarkers; drug delivery; exosome isolation; exosomes; extracellular vesicles (EVs); tumor-derived exosomes (TEX).
Conflict of interest statement
The authors declare no conflict of interest.
References
-
- Kucharzewska P., Christianson H.C., Welch J.E., Svensson K.J., Fredlund E., Ringnér M., Mörgelin M., Bourseau-Guilmain E., Bengzon J., Belting M. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. Natl. Acad. Sci. USA. 2013;110:7312–7317. doi: 10.1073/pnas.1220998110. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
