Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 23;18(1):324.
doi: 10.1186/s12936-019-2944-2.

Targeted Next Generation Sequencing for malaria research in Africa: current status and outlook

Affiliations

Targeted Next Generation Sequencing for malaria research in Africa: current status and outlook

Anita Ghansah et al. Malar J. .

Abstract

Targeted Next Generation Sequencing (TNGS) is an efficient and economical Next Generation Sequencing (NGS) platform and the preferred choice when specific genomic regions are of interest. So far, only institutions located in middle and high-income countries have developed and implemented the technology, however, the efficiency and cost savings, as opposed to more traditional sequencing methodologies (e.g. Sanger sequencing) make the approach potentially well suited for resource-constrained regions as well. In April 2018, scientists from the Plasmodium Diversity Network Africa (PDNA) and collaborators met during the 7th Pan African Multilateral Initiative of Malaria (MIM) conference held in Dakar, Senegal to explore the feasibility of applying TNGS to genetic studies and malaria surveillance in Africa. The group of scientists reviewed the current experience with TNGS platforms in sub-Saharan Africa (SSA) and identified potential roles the technology might play to accelerate malaria research, scientific discoveries and improved public health in SSA. Research funding, infrastructure and human resources were highlighted as challenges that will have to be mitigated to enable African scientists to drive the implementation of TNGS in SSA. Current roles of important stakeholders and strategies to strengthen existing networks to effectively harness this powerful technology for malaria research of public health importance were discussed.

Keywords: Africa; Malaria; Targeted Next Generation Sequencing.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Talundzic E, Ndiaye YD, Deme AB, Olsen C, Patel DS, Biliya S, et al. Molecular epidemiology of Plasmodium falciparum kelch13 mutations in Senegal determined by using targeted amplicon deep sequencing. Antimicrob Agents Chemother. 2017;61:02116–16. doi: 10.1128/AAC.02116-16. - DOI - PMC - PubMed
    1. Nag S, Dalgaard MD, Kofoed PE, Ursing J, Crespo M, Andersen LOB, et al. High throughput resistance profiling of Plasmodium falciparum infections based on custom dual indexing and illumina next generation sequencing-technology. Sci Rep. 2017;7:2398. doi: 10.1038/s41598-017-02724-x. - DOI - PMC - PubMed
    1. Aydemir O, Janko M, Hathaway NJ, Verity R, Mwandagalirwa MK, Tshefu AK, et al. Drug-resistance and population structure of Plasmodium falciparum across the democratic Republic of Congo using high-throughput molecular inversion probes. J Infect Dis. 2018;218:946–955. doi: 10.1093/infdis/jiy223. - DOI - PMC - PubMed
    1. Talundzic E, Ravishankar S, Kelley J, Patel D, Plucinski M, Schmedes S, et al. Next-generation sequencing and bioinformatics protocol for malaria drug resistance marker surveillance. Antimicrob Agents Chemother. 2018;62:02474–17. doi: 10.1128/AAC.02474-17. - DOI - PMC - PubMed
    1. Ghansah A, Amenga-Etego L, Amambua-Ngwa A, Andagalu B, Apinjoh T, Bouyou-Akotet M, et al. Monitoring parasite diversity for malaria elimination in sub-Saharan Africa. Science. 2014;345:1297–1298. doi: 10.1126/science.1259423. - DOI - PMC - PubMed