Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov;58(5):746-755.
doi: 10.1016/j.ejvs.2019.03.009. Epub 2019 Sep 20.

Quantitative Stent Graft Motion in ECG Gated CT by Image Registration and Segmentation: In Vitro Validation and Preliminary Clinical Results

Affiliations
Free article

Quantitative Stent Graft Motion in ECG Gated CT by Image Registration and Segmentation: In Vitro Validation and Preliminary Clinical Results

Maaike A Koenrades et al. Eur J Vasc Endovasc Surg. 2019 Nov.
Free article

Abstract

Objectives: The dynamic endovascular environment of stent grafts may influence long term outcome after endovascular aneurysm repair (EVAR). The sealing and fixation of a stent graft to the aortic wall is challenged at every heartbeat, yet knowledge of the cardiac induced dynamics of stent grafts is sparse. Understanding the stent-artery interaction is crucial for device development and may aid the prediction of failure in the individual patient. The aim of this work was to establish quantitative stent graft motion in multiphasic electrocardiogram (ECG) gated computed tomography (CT) by image registration and segmentation techniques.

Methods: Experimental validation was performed by evaluating a series of ECG gated CT scans of a stent graft moving at different amplitudes of displacement at different virtual heart rates using a motion generating device with synchronised ECG triggering. The methodology was further tested on clinical data of patients treated with EVAR devices with different stent graft designs. Displacement during the cardiac cycle was analysed for points on the fixating stent rings, the branches or fenestrations, and the spine.

Results: Errors for the amplitude of displacement measured in vitro at individual points on the wire frame were at most 0.3 mm. In situ cardiac induced displacement of the devices was found to differ per location and also depended on the type of stent graft. Displacement during the cardiac cycle was greatest in a fenestrated device and smallest in a chimney graft sac anchoring endosystem, with maximum displacement varying from 0.0 to 1.4 mm. There was no substantial displacement measurable in the spine.

Conclusions: A novel methodology to quantify and visualise stent graft motion in multiphasic ECG gated CT has been validated in vitro and tested in vivo. This methodology enables further exploration of in situ motion of different stent grafts and branch stents and their interaction with native vessels.

Keywords: Dynamic quantification; ECG gated computed tomography; Endovascular aneurysm repair; Image registration; In vitro validation; Stent graft motion.

PubMed Disclaimer

MeSH terms

LinkOut - more resources