Targeted photoredox catalysis in cancer cells
- PMID: 31548671
- DOI: 10.1038/s41557-019-0328-4
Targeted photoredox catalysis in cancer cells
Abstract
Hypoxic tumours are a major problem for cancer photodynamic therapy. Here, we show that photoredox catalysis can provide an oxygen-independent mechanism of action to combat this problem. We have designed a highly oxidative Ir(III) photocatalyst, [Ir(ttpy)(pq)Cl]PF6 ([1]PF6, where 'ttpy' represents 4'-(p-tolyl)-2,2':6',2''-terpyridine and 'pq' represents 3-phenylisoquinoline), which is phototoxic towards both normoxic and hypoxic cancer cells. Complex 1 photocatalytically oxidizes 1,4-dihydronicotinamide adenine dinucleotide (NADH)-an important coenzyme in living cells-generating NAD• radicals with a high turnover frequency in biological media. Moreover, complex 1 and NADH synergistically photoreduce cytochrome c under hypoxia. Density functional theory calculations reveal π stacking in adducts of complex 1 and NADH, facilitating photoinduced single-electron transfer. In cancer cells, complex 1 localizes in mitochondria and disrupts electron transport via NADH photocatalysis. On light irradiation, complex 1 induces NADH depletion, intracellular redox imbalance and immunogenic apoptotic cancer cell death. This photocatalytic redox imbalance strategy offers a new approach for efficient cancer phototherapy.
References
-
- Riddell, I. A. & Lippard, S. J. Cisplatin and oxaliplatin: our current understanding of their actions. Met Ions Life Sci. 18, 1–42 (2018).
-
- Bergamo, A., Dyson, P. J. & Sava, G. The mechanism of tumour cell death by metal-based anticancer drugs is not only a matter of DNA interactions. Coord. Chem. Rev. 360, 17–33 (2018). - DOI
-
- Farrer, N. J., Salassa, L. & Sadler, P. J. Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans. 10690–10701 (2009).
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
