Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov;11(11):1041-1048.
doi: 10.1038/s41557-019-0328-4. Epub 2019 Sep 23.

Targeted photoredox catalysis in cancer cells

Affiliations

Targeted photoredox catalysis in cancer cells

Huaiyi Huang et al. Nat Chem. 2019 Nov.

Abstract

Hypoxic tumours are a major problem for cancer photodynamic therapy. Here, we show that photoredox catalysis can provide an oxygen-independent mechanism of action to combat this problem. We have designed a highly oxidative Ir(III) photocatalyst, [Ir(ttpy)(pq)Cl]PF6 ([1]PF6, where 'ttpy' represents 4'-(p-tolyl)-2,2':6',2''-terpyridine and 'pq' represents 3-phenylisoquinoline), which is phototoxic towards both normoxic and hypoxic cancer cells. Complex 1 photocatalytically oxidizes 1,4-dihydronicotinamide adenine dinucleotide (NADH)-an important coenzyme in living cells-generating NAD radicals with a high turnover frequency in biological media. Moreover, complex 1 and NADH synergistically photoreduce cytochrome c under hypoxia. Density functional theory calculations reveal π stacking in adducts of complex 1 and NADH, facilitating photoinduced single-electron transfer. In cancer cells, complex 1 localizes in mitochondria and disrupts electron transport via NADH photocatalysis. On light irradiation, complex 1 induces NADH depletion, intracellular redox imbalance and immunogenic apoptotic cancer cell death. This photocatalytic redox imbalance strategy offers a new approach for efficient cancer phototherapy.

PubMed Disclaimer

References

    1. Riddell, I. A. & Lippard, S. J. Cisplatin and oxaliplatin: our current understanding of their actions. Met Ions Life Sci. 18, 1–42 (2018).
    1. Meier-Menches, S. M., Gerner, C., Berger, W., Hartinger, C. G. & Keppler, B. K. Structure–activity relationships for ruthenium and osmium anticancer agents—towards clinical development. Chem. Soc. Rev. 47, 909–928 (2018). - DOI - PubMed
    1. Bergamo, A., Dyson, P. J. & Sava, G. The mechanism of tumour cell death by metal-based anticancer drugs is not only a matter of DNA interactions. Coord. Chem. Rev. 360, 17–33 (2018). - DOI
    1. Farrer, N. J., Salassa, L. & Sadler, P. J. Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans. 10690–10701 (2009).
    1. Banerjee, S. & Chakravarty, A. R. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Acc. Chem. Res. 48, 2075–2083 (2015). - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources