Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Dec:237:124548.
doi: 10.1016/j.chemosphere.2019.124548. Epub 2019 Aug 12.

Advances on the toxicity of uranium to different organisms

Affiliations
Review

Advances on the toxicity of uranium to different organisms

Ning Gao et al. Chemosphere. 2019 Dec.

Abstract

The extensive application of radioactive element uranium (U) and its compounds in the nuclear industry has significantly increased the risk of exposure to the environment. Therefore, research on the safety risks and toxicity mechanisms of U exposure has received increasing attention. This paper reviews the toxic effects of U on different species under different conditions, and summarizes the potential toxicity mechanisms. Under the exposure of U, reactive oxygen species (ROS) produced in cells will damage membrane structure in cells, and inhibit respiratory chain reaction by reducing the production of NADH and ATP. It also induce the expression of apoptosis factors such as Bcl-2, Bid, Bax, and caspase family to cause apoptosis cascade reaction, leading to DNA degradation and cell death. We innovatively list some methods to reduce the toxicity of U because some microorganisms can precipitate uranyl ions through biomineralization or reduction processes. Our work provides a solid foundation for further risk assessment of U.

Keywords: Apoptosis; Chemical toxicity; Organism; Oxidative stress; Respiratory chain; Uranium.

PubMed Disclaimer

LinkOut - more resources