Genetic architecture of human plasma lipidome and its link to cardiovascular disease
- PMID: 31551469
- PMCID: PMC6760179
- DOI: 10.1038/s41467-019-11954-8
Genetic architecture of human plasma lipidome and its link to cardiovascular disease
Abstract
Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10-8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD.
Conflict of interest statement
V.S. has participated in a conference trip sponsored by Novo Nordisk and received an honorarium from the same source for participating in an advisory board meeting. M.J.G. is an employee of Lipotype GmbH, C.K. is a shareholder and employee of Lipotype GmbH, K.S. is a shareholder and CEO of Lipotype GmbH. M.A.S. is a shareholder of Lipotype GmbH and an employee of Łukasiewicz Research Network–PORT Polish Center for Technology Development. The remaining authors have no relevant competing interests.
Figures







References
-
- Alshehry ZH, et al. Plasma lipidomic profiles improve on traditional risk factors for the prediction of cardiovascular events in type 2 diabetes mellitus. Circulation. 2016;134:1637–1650. - PubMed
-
- Stegemann C, et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based bruneck study. Circulation. 2014;129:1821–1831. - PubMed