Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Oct;22(10):1586-1597.
doi: 10.1038/s41593-019-0503-3. Epub 2019 Sep 24.

Neuromodulation in circuits of aversive emotional learning

Affiliations
Review

Neuromodulation in circuits of aversive emotional learning

Ekaterina Likhtik et al. Nat Neurosci. 2019 Oct.

Erratum in

Abstract

Emotional learning and memory are functionally and dysfunctionally regulated by the neuromodulatory state of the brain. While the role of excitatory and inhibitory neural circuits mediating emotional learning and its control have been the focus of much research, we are only now beginning to understand the more diffuse role of neuromodulation in these processes. Recent experimental studies of the acetylcholine, noradrenaline and dopamine systems in fear learning and extinction of fear responding provide surprising answers to key questions in neuromodulation. One area of research has revealed how modular organization, coupled with context-dependent coding modes, allows for flexible brain-wide or targeted neuromodulation. Other work has shown how these neuromodulators act in downstream targets to enhance signal-to-noise ratios and gain, as well as to bind distributed circuits through neuronal oscillations. These studies elucidate how different neuromodulatory systems regulate aversive emotional processing and reveal fundamental principles of neuromodulatory function.

PubMed Disclaimer

References

    1. Everitt, B. J. & Robbins, T. W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997). - PubMed - DOI
    1. Mesulam, M. M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214, 170–197 (1983). - PubMed - DOI
    1. Mesulam, M. M., Mufson, E. J., Wainer, B. H. & Levey, A. I. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10, 1185–1201 (1983). - PubMed - DOI
    1. Carlsen, J., Záborszky, L. & Heimer, L. Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J. Comp. Neurol. 234, 155–167 (1985). - PubMed - DOI
    1. Zaborszky, L., Pang, K., Somogyi, J., Nadasdy, Z. & Kallo, I. The basal forebrain corticopetal system revisited. Ann. NY Acad. Sci. 877, 339–367 (1999). - PubMed - DOI

Publication types

Substances

LinkOut - more resources