Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 24;7(10):389.
doi: 10.3390/microorganisms7100389.

Molecular Epidemiological Characterization of Staphylococcus a rgenteus Clinical Isolates in Japan: Identification of Three Clones (ST1223, ST2198, and ST2550) and a Novel Staphylocoagulase Genotype XV

Affiliations

Molecular Epidemiological Characterization of Staphylococcus a rgenteus Clinical Isolates in Japan: Identification of Three Clones (ST1223, ST2198, and ST2550) and a Novel Staphylocoagulase Genotype XV

Meiji Soe Aung et al. Microorganisms. .

Abstract

Staphylococcus argenteus, a novel emerging species within Staphylococcus aureus complex (SAC), has been increasingly reported worldwide. In this study, prevalence of S. argenteus among human clinical isolates, and their clonal diversity and genetic characteristics of virulence factors were investigated in Hokkaido, the northern main island of Japan. During a four-month period starting from March 2019, twenty-four S. argenteus and 4330 S. aureus isolates were recovered from clinical specimens (the ratio of S. argenteus to S. aureus :0.0055). Half of S. argenteus isolates (n = 12) belonged to MLST sequence type (ST) 2250 and its single-locus variant, with staphylocoagulase genotype (coa-) XId, while the remaining isolates were assigned to ST2198/coa-XIV (n = 6), and ST1223 with a novel coa-XV identified in this study (n = 6). All the isolates were mecA-negative, and susceptible to all the antimicrobials tested, except for an ST2198 isolate with blaZ and an ST2250 isolate with tet(L) showing resistance to ampicillin and tetracyclines, respectively. Common virulence factors in the S. argenteus isolates were staphylococcal enterotoxin (-like) genes sey, selz, sel26, and sel27 in ST2250, selx in ST2198, and enterotoxin gene cluster (egc-1: seg-sei-sem-sen-seo) in ST1223 isolates, in addition to hemolysin genes (hla, hlb, and hld) distributed universally. Elastin binding protein gene (ebpS) and MSCRAMM family adhesin SdrE gene (sdrE) detected in all the isolates showed high sequence identity among them (> 97%), while relatively lower identity to those of S. aureus (78-92%). Phylogenetically, ebpS, sdrE, selx, sey, selw, sel26, and sel27 of S. argenteus formed clusters distinct from those of S. aureus, unlike sec, selz, tst-1, and staphylokinase gene (sak). The present study revealed the prevalence of S. argenteus among clinical isolates, and presence of three distinct S. argenteus clones (ST2250; ST2198 and ST1223) harboring different virulence factors in northern Japan. ST2198 S. argenteus, a minor clone (strain BN75-like) that had been rarely reported, was first identified in Japan as human isolates.

Keywords: Staphylococcus argenteus, ST, staphyocoagulase genotype, enterotoxin (-like) genes, Japan.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Figures

Figure 1
Figure 1
Phylogenetic dendrograms of staphylocoagulase gene encoding D1 region (a) and D2-C region (b) of S. argenteus and S. aureus strains constructed by maximum-likelihood method with MEGA.7 program. Trees were statistically supported by bootstrapping with 1000 replicates, and genetic distances were calculated by Kimura two-parameter model. Variation scale is described at the bottom. Percent bootstrap support is indicated by the values at each node (the values < 80 are omitted). Filled circle and open circle indicate S. argenteus isolates isolated in the present study and those reported elsewhere previously, respectively. A square indicates strain MSHR1132T. Others are S. aureus strains representing individual coagulase genotypes. Clusters of coa-XI, -XII, -XIV, and -XV (a) and S. argenteus cluster (b) are shown on the right.
Figure 1
Figure 1
Phylogenetic dendrograms of staphylocoagulase gene encoding D1 region (a) and D2-C region (b) of S. argenteus and S. aureus strains constructed by maximum-likelihood method with MEGA.7 program. Trees were statistically supported by bootstrapping with 1000 replicates, and genetic distances were calculated by Kimura two-parameter model. Variation scale is described at the bottom. Percent bootstrap support is indicated by the values at each node (the values < 80 are omitted). Filled circle and open circle indicate S. argenteus isolates isolated in the present study and those reported elsewhere previously, respectively. A square indicates strain MSHR1132T. Others are S. aureus strains representing individual coagulase genotypes. Clusters of coa-XI, -XII, -XIV, and -XV (a) and S. argenteus cluster (b) are shown on the right.

References

    1. Tong S.Y., Schaumburg F., Ellington M.J., Corander J., Pichon B., Leendertz F., Bentley S.D., Parkhill J., Holt D.C., Peters G., et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: The non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 2015;65:15–22. doi: 10.1099/ijs.0.062752-0. - DOI - PMC - PubMed
    1. Holt D.C., Holden M.T., Tong S.Y., Castillo-Ramirez S., Clarke L., Quail M.A., Currie B.J., Parkhill J., Bentley S.D., Feil E.J., et al. A very early-branching Staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin. Genome Biol. Evol. 2011;3:881–895. doi: 10.1093/gbe/evr078. - DOI - PMC - PubMed
    1. Hansen T.A., Bartels M.D., Høgh S.V., Dons L.E., Pedersen M., Jensen T.G., Kemp M., Skov M.N., Gumpert H., Worning P., et al. Whole genome sequencing of Danish Staphylococcus argenteus reveals a genetically diverse collection with clear separation from Staphylococcus aureus. Front. Microbiol. 2017:8. doi: 10.3389/fmicb.2017.01512. - DOI - PMC - PubMed
    1. Zhang D.F., Xu X., Song Q., Bai Y., Zhang Y., Song M., Shi C., Shi X. Identification of Staphylococcus argenteus in Eastern China based on a nonribosomal peptide synthetase (NRPS) gene. Future Microbiol. 2016;11:1113–1121. doi: 10.2217/fmb-2016-0017. - DOI - PubMed
    1. Aung M.S., San T., San N., Oo W.M., Ko P.M., Thet K.T., Urushibara N., Kawaguchiya M., Sumi A., Kobayashi N. Molecular characterization of Staphylococcus argenteus in Myanmar: Identification of novel genotypes/clusters in staphylocoagulase, protein Aalpha-haemolysin and other virulence factors. J. Med. Microbiol. 2019;68:95–104. - PubMed