Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Mar 25;260(6):3305-13.

Purification of a RecA protein analogue from Bacillus subtilis

  • PMID: 3156134
Free article

Purification of a RecA protein analogue from Bacillus subtilis

C M Lovett Jr et al. J Biol Chem. .
Free article

Abstract

We have identified in Bacillus subtilis an analogue of the Escherichia coli RecA protein. Its activities suggest that it has a corresponding role in general genetic recombination and in regulation of SOS (DNA repair) functions. The B. subtilis protein (B. subtilis Rec) has a Mr of 42,000 and cross-reacts with antisera raised against E. coli RecA protein. Its level is significantly reduced in the recombination-deficient recE4 mutant. B. subtilis Rec is induced 10- to 20-fold in rec+ strains following treatment with mitomycin C, whereas it is not induced in the recombination-deficient mutants recE4, recE45, and recA1. We have purified B. subtilis Rec about 2000-fold to near homogeneity and we describe its activities. It catalyzes DNA-dependent hydrolysis of dATP at a rate comparable to that of E. coli RecA protein. However, B. subtilis Rec has a negligible ATPase activity, although ATP effectively inhibits dATP hydrolysis. In the presence of dATP, B. subtilis Rec catalyzes DNA strand transfer, assayed by the conversion of phi X174 linear duplex DNA and homologous circular single-stranded DNA to replicative form II (circular double-stranded DNA with a discontinuity in one strand). ATP does not support strand transfer by this protein. B. subtilis Rec catalyzes proteolytic cleavage of E. coli LexA repressor in a reaction that requires single-stranded DNA and nucleoside triphosphate. This result suggests that an SOS regulatory system like the E. coli system is present in B. subtilis. The B. subtilis enzyme does not promote any detectable cleavage of the E. coli bacteriophage lambda repressor.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources