Inferring the Molecular Mechanisms of Noncoding Alzheimer's Disease-Associated Genetic Variants
- PMID: 31561366
- PMCID: PMC7316086
- DOI: 10.3233/JAD-190568
Inferring the Molecular Mechanisms of Noncoding Alzheimer's Disease-Associated Genetic Variants
Abstract
Most of the loci identified by genome-wide association studies (GWAS) for late-onset Alzheimer's disease (LOAD) are in strong linkage disequilibrium (LD) with nearby variants all of which could be the actual functional variants, often in non-protein-coding regions and implicating underlying gene regulatory mechanisms. We set out to characterize the causal variants, regulatory mechanisms, tissue contexts, and target genes underlying these associations. We applied our INFERNO algorithm to the top 19 non-APOE loci from the IGAP GWAS study. INFERNO annotated all LD-expanded variants at each locus with tissue-specific regulatory activity. Bayesian co-localization analysis of summary statistics and eQTL data was performed to identify tissue-specific target genes. INFERNO identified enhancer dysregulation in all 19 tag regions analyzed, significant enrichments of enhancer overlaps in the immune-related blood category, and co-localized eQTL signals overlapping enhancers from the matching tissue class in ten regions (ABCA7, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, EPHA1, FERMT2, ZCWPW1). In several cases, we identified dysregulation of long noncoding RNA (lncRNA) transcripts and applied the lncRNA target identification algorithm from INFERNO to characterize their downstream biological effects. We also validated the allele-specific effects of several variants on enhancer function using luciferase expression assays. By integrating functional genomics with GWAS signals, our analysis yielded insights into the regulatory mechanisms, tissue contexts, genes, and biological processes affected by noncoding genetic variation associated with LOAD risk.
Keywords: Alzheimer’s disease; bioinformatics; genetics; genomics; long noncoding RNA.
Conflict of interest statement
Conflict of Interest
The authors have no conflict of interest to report.
Figures
References
-
- Association A (2015) 2015 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 11, 332–384. - PubMed
-
- Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer J a, Posner SF, Viitanen M, Winblad B, Ahlbom A (1997) Heritability for Alzheimer’s disease: the study of dementia in Swedish twins. Journals Gerontol. Ser. A, Biol. Sci. Med. Sci. 52, M117–M125. - PubMed
-
- Corder EH, Saunders a M, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses a D, Haines JL, Pericak-Vance M a (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science (80-. ). 261, 921–923. - PubMed
-
- Escott-Price V, Sims R, Bannister C, Harold D, Vronskaya M, Majounie E, Badarinarayan N, Morgan K, Passmore P, Holmes C, Powell J, Brayne C, Gill M, Mead S, Goate A, Cruchaga C, Lambert JC, Van Duijn C, Maier W, Ramirez A, Holmans P, Jones L, Hardy J, Seshadri S, Schellenberg GD, Amouyel P, Williams J (2015) Common polygenic variation enhances risk prediction for Alzheimer’s disease. Brain 138, 3673–3684. - PMC - PubMed
-
- Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider J a, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JSK, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha G a, Jin L-W, Johnson N, Karlawish J, Karydas A, Kaye J a, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller C a, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary R a, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer Ma, Smith CD, Sonnen Ja, Spina S, Stern Ra, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters H V, Vonsattel JP, Weintraub S, Welsh-Bohmer K a, Williamson J, Woltjer RL, Cantwell LB, Dombroski B a, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett D a, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull W a, Foroud TM, Haines JL, Mayeux R, Pericak-Vance Ma, Farrer L a, Schellenberg GD (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat. Genet. 43, 436–41. - PMC - PubMed
Publication types
MeSH terms
Grants and funding
- P30 AG010124/AG/NIA NIH HHS/United States
- N01 AG012100/AG/NIA NIH HHS/United States
- U24 AG021886/AG/NIA NIH HHS/United States
- R01 GM099962/GM/NIGMS NIH HHS/United States
- U01 AG032984/AG/NIA NIH HHS/United States
- T32 AG000255/AG/NIA NIH HHS/United States
- U01 AG016976/AG/NIA NIH HHS/United States
- R01 AG017917/AG/NIA NIH HHS/United States
- UF1 AG047133/AG/NIA NIH HHS/United States
- U24 AG041689/AG/NIA NIH HHS/United States
- R01 AG033193/AG/NIA NIH HHS/United States
- U54 NS100693/NS/NINDS NIH HHS/United States
- U01 AG058654/AG/NIA NIH HHS/United States
- U54 AG052427/AG/NIA NIH HHS/United States
- R01 HL105756/HL/NHLBI NIH HHS/United States
- 503480/MRC_/Medical Research Council/United Kingdom
- RF1 AG055477/AG/NIA NIH HHS/United States
- 082604/2/07/Z/WT_/Wellcome Trust/United Kingdom
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
