Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Feb;75(2):413-9.
doi: 10.1172/JCI111715.

A nonantigenic covalent streptokinase-polyethylene glycol complex with plasminogen activator function

Comparative Study

A nonantigenic covalent streptokinase-polyethylene glycol complex with plasminogen activator function

S Rajagopalan et al. J Clin Invest. 1985 Feb.

Abstract

A series of new, covalent polyethylene glycol (PEG)-streptokinase adducts were synthesized and characterized. PEGs with average molecular weights of 2,000, 4,000, and 5,000 were activated with carbonyldiimidazole and coupled to the protein under standardized reaction conditions. Steady-state kinetic analysis demonstrated comparable Km values for the activation of plasminogen by streptokinase, PEG-2-streptokinase, and PEG-4-streptokinase. The kcat values were somewhat decreased when PEG-2 or PEG-4 was coupled to the streptokinase. Activation by the PEG-5 adduct did not follow Michaelis-Menten kinetics under the conditions employed in this study. Plasmin activity obtained by incubating streptokinase derivatives with plasminogen also was studied as a function of time with each of the PEG-streptokinase derivatives. By this assay, incubations containing PEG-5-streptokinase and unmodified streptokinase demonstrated comparable activity while reaction mixtures containing PEG-2-streptokinase and PEG-4-streptokinase were slightly more active. Streptokinase incubated with plasminogen at a 1:1 molar ratio was extensively degraded after 30 min whereas PEG-2-streptokinase was resistant to plasmin cleavage. The derivatized proteins were radioiodinated and incubated in plastic microtiter plates that were coated with an immunoglobulin fraction containing antibodies to streptokinase. Binding of the PEG-streptokinase adducts was decreased by greater than 95% compared with unmodified streptokinase. Plasminogen activator complexes were formed by reacting the streptokinases with human plasminogen in vitro and the clearance studied in mice. Radioiodinated plasmin in complex with the PEG-streptokinase adducts cleared at a slower rate than did plasmin complexed with unmodified streptokinase. Catabolism of the protease still occurred by a mechanism that involved reaction with alpha 2-macroglobulin as has been described for nonderivatized streptokinase-plasminogen complex (Gonias, S. L., M. Einarsson, and S. V. Pizzo, 1982, J. Clin. Invest., 70:412-423). When more extensive derivatization procedures were utilized, PEG-2-streptokinase preparations were obtained that further prolonged the clearance of complexed 125I-plasmin; however, these adducts did not uniformly retain comparable activity. It is suggested that PEG-streptokinase complexes with greatly reduced antigenicity may be useful in the treatment of thrombotic disorders.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1967 Feb 10;242(3):533-42 - PubMed
    1. Biochem J. 1983 Jan 1;209(1):99-105 - PubMed
    1. Biochem Biophys Res Commun. 1971 May 7;43(3):694-702 - PubMed
    1. Arch Biochem Biophys. 1972 Jul;151(1):194-9 - PubMed
    1. Eur J Biochem. 1973 Nov 15;39(2):471-9 - PubMed

Publication types