Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 26;520(1):47-53.
doi: 10.1016/j.bbrc.2019.09.096. Epub 2019 Sep 26.

Prevention of post-ischemic seizure by rapamycin is associated with deactivation of mTOR and ERK1/2 pathways in hyperglycemic rats

Affiliations

Prevention of post-ischemic seizure by rapamycin is associated with deactivation of mTOR and ERK1/2 pathways in hyperglycemic rats

Xiao Yang et al. Biochem Biophys Res Commun. .

Abstract

Pre-ischemic hyperglycemia increases the occurrence of post-ischemic seizures both in experimental and clinical settings. The underlying mechanisms are not fully delineated; however, activation of mammalian target of rapamycin (mTOR) has been shown to be engaged in the pathogenesis of epilepsy, in which seizures are a regular occurrence. Therefore, we wanted to explore specifically the capacity of an mTOR inhibitor, rapamycin, in preventing post-ischemic seizures in hyperglycemic rats and to explore the underlying molecular mechanisms. The results showed that none of the rats in the sham control, EG ischemic, or within 3 h of I/R in hyperglycemic ischemic groups experienced seizures. Generalized tonic-clonic seizures were observed in all 8/8 of hyperglycemic ischemic rats at 16 h of I/R. Treatment with rapamycin successfully blocked post-ischemic seizures in 7/8 hyperglycemic ischemic animals. Rapamycin also lessened the neuronal death extraordinarily in hyperglycemic ischemic animals as revealed by histopathological studies. Protein analysis revealed that transient ischemia resulted in increases in p-mTOR and p-S6, especially in the hippocampi of the hyperglycemic ischemic rats. Rapamycin treatment completely blocked mTOR activation. Furthermore, hyperglycemic ischemia induced a much prominent rise of p-ERK1/2 both in the cortex and the hippocampi compared with EG counterparts; whereas rapamycin suppressed it. We conclude that the development of post-ischemic seizures in the hyperglycemic animals may be associated with activations of mTOR and ERK1/2 pathways and that rapamycin treatment inhibited the post-ischemic seizures effectively by suppressing the mTOR and ERK1/2 signaling.

Keywords: Anti-seizure; Cerebral ischemia; ERK1/2; Hyperglycemia; Post-ischemic seizures; Rapamycin; mTOR pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources