Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan;51(1):233-246.
doi: 10.1109/TCYB.2019.2940526. Epub 2020 Dec 22.

Fused Sparse Network Learning for Longitudinal Analysis of Mild Cognitive Impairment

Fused Sparse Network Learning for Longitudinal Analysis of Mild Cognitive Impairment

Peng Yang et al. IEEE Trans Cybern. 2021 Jan.

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease with an irreversible and progressive process. To understand the brain functions and identify the biomarkers of AD and early stages of the disease [also known as, mild cognitive impairment (MCI)], it is crucial to build the brain functional connectivity network (BFCN) using resting-state functional magnetic resonance imaging (rs-fMRI). Existing methods have been mainly developed using only a single time-point rs-fMRI data for classification. In fact, multiple time-point data is more effective than a single time-point data in diagnosing brain diseases by monitoring the disease progression patterns using longitudinal analysis. In this article, we utilize multiple rs-fMRI time-point to identify early MCI (EMCI) and late MCI (LMCI), by integrating the fused sparse network (FSN) model with parameter-free centralized (PFC) learning. Specifically, we first construct the FSN framework by building multiple time-point BFCNs. The multitask learning via PFC is then leveraged for longitudinal analysis of EMCI and LMCI. Accordingly, we can jointly learn the multiple time-point features constructed from the BFCN model. The proposed PFC method can automatically balance the contributions of different time-point information via learned specific and common features. Finally, the selected multiple time-point features are fused by a similarity network fusion (SNF) method. Our proposed method is evaluated on the public AD neuroimaging initiative phase-2 (ADNI-2) database. The experimental results demonstrate that our method can achieve quite promising performance and outperform the state-of-the-art methods.

PubMed Disclaimer

MeSH terms

LinkOut - more resources