Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Dec;32(6):808-814.
doi: 10.1097/WCO.0000000000000754.

Exercise factors as potential mediators of cognitive rehabilitation following traumatic brain injury

Affiliations
Review

Exercise factors as potential mediators of cognitive rehabilitation following traumatic brain injury

Joseph S Stephan et al. Curr Opin Neurol. 2019 Dec.

Abstract

Purpose of review: To summarize what is known about how exercise mediates cognitive rehabilitation post traumatic brain injury (TBI).

Recent findings: TBI is a devastating condition that leads to cognitive, motor and social deficits with significant social and economic burdens. Physical exercise has been shown to mediate cognitive rehabilitation post-TBI. The therapeutic effects of exercise are related in part to its ability to increase brain-derived neurotrophic factor (Bdnf) expression in the hippocampus. However, we have only recently begun to understand how exercise induces Bdnf expression in the brain through the identification of peripheral exercise factors. In this review, we will discuss the literature describing the various known exercise factors and we will assess their potential role in TBI.

Summary: The reviewed literature makes a strong case that exercise has important protective roles post-TBI. It also highlights the relevance and role of peripheral exercise factors, such as lactate and beta-hydroxybutyrate in mediating beneficial effects of exercise on cognition. Studying exercise factors in the context of injury will likely contribute to better therapeutic strategies for TBI.

PubMed Disclaimer

Publication types

MeSH terms

Substances