Renal Protection Against Ischemia Reperfusion Injury: Hemoglobin-based Oxygen Carrier-201 Versus Blood as an Oxygen Carrier in Ex Vivo Subnormothermic Machine Perfusion
- PMID: 31568396
- DOI: 10.1097/TP.0000000000002967
Renal Protection Against Ischemia Reperfusion Injury: Hemoglobin-based Oxygen Carrier-201 Versus Blood as an Oxygen Carrier in Ex Vivo Subnormothermic Machine Perfusion
Abstract
Background: The optimal method of oxygen delivery to donor kidneys during ex vivo machine perfusion has not been established. We have recently reported the beneficial effects of subnormothermic (22°C) blood perfusion in the preservation of porcine donation after circulatory death kidneys. Since using blood as a clinical perfusate has limitations, including matching availability and potential presence of pathogen, we sought to assess hemoglobin-based oxygen carrier (HBOC-201) in oxygen delivery to the kidney for renal protection.
Methods: Pig kidneys (n = 5) were procured after 30 minutes of warm in situ ischemia by cross-clamping the renal arteries. Organs were flushed with histidine tryptophan ketoglutarate solution and subjected to static cold storage or pulsatile perfusion with an RM3 pump at 22°C for 4 hours with HBOC-201 and blood. Thereafter, kidneys were reperfused with normothermic (37°C) oxygenated blood for 4 hours. Blood and urine were subjected to biochemical analysis. Total urine output, urinary protein, albumin/creatinine ratio, flow rate, resistance were measured. Acute tubular necrosis, apoptosis, urinary kidney damage markers, neutrophil gelatinase-associated lipocalin 1, and interleukin 6 were also assessed.
Results: HBOC-201 achieved tissues oxygen saturation equivalent to blood. Furthermore, upon reperfusion, HBOC-201 treated kidneys had similar renal blood flow and function compared with blood-treated kidneys. Histologically, HBOC-201 and blood-perfused kidneys had vastly reduced acute tubular necrosis scores and degrees of terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining versus kidneys treated with cold storage. Urinary damage markers and IL6 levels were similarly reduced by both blood and HBOC-201.
Conclusions: HBOC-201 is an excellent alternative to blood as an oxygen-carrying molecule in an ex vivo subnormothermic machine perfusion platform in kidneys.
References
-
- Mirshekar-Syahkal B, Summers D, Bradbury LL, et al. Local expansion of donation after circulatory death kidney transplant activity improves waitlisted outcomes and addresses inequities of access to transplantation.Am J Transplant2017172390–400
-
- Singh SK, Kim SJ. Does expanded criteria donor status modify the outcomes of kidney transplantation from donors after cardiac death?Am J Transplant2013132329–336
-
- Moers C, Smits JM, Maathuis MH, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation.N Engl J Med200936017–19
-
- Nicholson ML, Hosgood SA. Renal transplantation after ex vivo normothermic perfusion: the first clinical study.Am J Transplant20131351246–1252
-
- Hamar M, Urbanellis P, Kaths MJ, et al. Normothermic ex vivo kidney perfusion reduces warm ischemic injury of porcine kidney grafts retrieved after circulatory death.Transplantation201810281262–1270
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical