Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 27;9(10):201.
doi: 10.3390/metabo9100201.

Application of 1H-NMR Metabolomics for the Discovery of Blood Plasma Biomarkers of a Mediterranean Diet

Affiliations

Application of 1H-NMR Metabolomics for the Discovery of Blood Plasma Biomarkers of a Mediterranean Diet

Shirin Macias et al. Metabolites. .

Abstract

The Mediterranean diet (MD) is a dietary pattern well-known for its benefits in disease prevention. Monitoring adherence to the MD could be improved by discovery of novel dietary biomarkers. The MEDiterranean Diet in Northern Ireland (MEDDINI) intervention study monitored the adherence of participants to the MD for up to 12 months. This investigation aimed to profile plasma metabolites, correlating each against the MD score of participants (n = 58). Based on an established 14-point scale MD score, subjects were classified into two groups ("low" and "high"). 1H-Nuclear Magnetic Resonance (1H-NMR) metabolomic analysis found that citric acid was the most significant metabolite (p = 5.99 × 10-4*; q = 0.03), differing between 'low' and 'high'. Furthermore, five additional metabolites significantly differed (p < 0.05; q < 0.35) between the two groups. Discriminatory metabolites included: citric acid, pyruvic acid, betaine, mannose, acetic acid and myo-inositol. Additionally, the top five most influential metabolites in multivariate models were also citric acid, pyruvic acid, betaine, mannose and myo-inositol. Metabolites significantly correlated with the consumption of certain food types. For example, citric acid positively correlated fruit, fruit juice and vegetable constituents of the diet, and negatively correlated with sweet foods alone or when combined with carbonated drinks. Citric acid was the best performing biomarker and this was enhanced by paired ratio with pyruvic acid. The present study demonstrates the utility of metabolomic profiling for effectively assessing adherence to MD and the discovery of novel dietary biomarkers.

Keywords: 1H-NMR; Mediterranean diet; biomarkers; dietary patterns; metabolomics.

PubMed Disclaimer

Conflict of interest statement

The authors have no conflict of interest to declare.

Figures

Figure 1
Figure 1
Multivariate statistical modelling of 1H-Nuclear Magnetic Resonance 1H-NMR metabolomic data. Plots A–C show group separation achieved by principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and partial least squares discriminant analysis (PLS-DA). Red circles (1) represent patients with high MDS and green circles (2) represent individuals with low MDS. D: Is the resulting variable importance in project (VIP) plot indicating the 15 most influential metabolites responsible for the observed separation in the PLS-DA model.
Figure 2
Figure 2
Blood levels of citric acid and pyruvic acid and MDS. (A) Citric acid levels positively correlated with MDS, whereas Pyruvic acid levels negatively correlated. (B) A paired metabolite ratio of citric acid and pyruvic acid achieved the greatest area under the receiver operating characteristic (ROC) curve (AUC = 0.74) value which was the best performing biomarker for MDS. Optimal cutoff was represented on the curve with a red dot and with a red horizontal line on the box plot. The box-plot showed that the overall distribution profiles for low MDS (0–4) and high MDS (5–10) were broadly similar but the mean value was 53% higher in the high MDS group. Y-axis represents concentrations (µM). Data were median centred. The mean concentration of each group was indicated with a red diamond.

References

    1. Vázquez-Fresno R., Llorach R., Urpi-Sarda M., Lupianez-Barbero A., Estruch R., Corella D., Fitó M., Arós F., Ruiz-Canela M., Salas-Salvadó J., et al. Metabolomic pattern analysis after Mediterranean diet intervention in a nondiabetic population: A 1- and 3-year follow-up in the PREDIMED study. J. Proteome Res. 2015;14:531–540. doi: 10.1021/pr5007894. - DOI - PubMed
    1. Mente A., de Koning L., Shannon H., Anand S.S. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch. Intern. Med. 2009;169:659–669. doi: 10.1001/archinternmed.2009.38. - DOI - PubMed
    1. Martínez-González M., García-Arellano A., Toledo E., Salas-Salvadó J., Buil-Cosiales P., Corella D., Covas M., Schröder H., Arós F., Gómez-Gracia E., et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS ONE. 2012;7:e43134. doi: 10.1371/journal.pone.0043134. - DOI - PMC - PubMed
    1. Estruch R., Ros E., Salas-Salvadó J., Covas M.I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018;378:e34. doi: 10.1056/NEJMoa1800389. - DOI - PubMed
    1. Damasceno N., Sala-Vila A., Cofán M., Pérez-Heras A., Fitó M., Ruiz-Gutiérrez V., Martínez-González M., Corella D., Arós F., Estruch R., et al. Mediterranean diet supplemented with nuts reduces waist circumference and shifts lipoprotein subfractions to a less atherogenic pattern in subjects at high cardiovascular risk. Atherosclerosis. 2013;230:347–353. doi: 10.1016/j.atherosclerosis.2013.08.014. - DOI - PubMed

LinkOut - more resources