SnRK2 Protein Kinases and mRNA Decapping Machinery Control Root Development and Response to Salt
- PMID: 31570508
- PMCID: PMC6945840
- DOI: 10.1104/pp.19.00818
SnRK2 Protein Kinases and mRNA Decapping Machinery Control Root Development and Response to Salt
Abstract
SNF1-RELATED PROTEIN KINASES 2 (SnRK2) are important components of early osmotic and salt stress signaling pathways in plants. The Arabidopsis (Arabidopsis thaliana) SnRK2 family comprises the abscisic acid (ABA)-activated protein kinases SnRK2.2, SnRK2.3, SnRK2.6, SnRK2.7, and SnRK2.8, and the ABA-independent subclass 1 protein kinases SnRK2.1, SnRK2.4, SnRK2.5, SnRK2.9, and SnRK2.10. ABA-independent SnRK2s act at the posttranscriptional level via phosphorylation of VARICOSE (VCS), a member of the mRNA decapping complex, that catalyzes the first step of 5'mRNA decay. Here, we identified VCS and VARICOSE RELATED (VCR) as interactors and phosphorylation targets of SnRK2.5, SnRK2.6, and SnRK2.10. All three protein kinases phosphorylated Ser-645 and Ser-1156 of VCS, whereas SnRK2.6 and SnRK2.10 also phosphorylated VCS Ser-692 and Ser-680 of VCR. We showed that subclass 1 SnRK2s, VCS, and 5' EXORIBONUCLEASE 4 (XRN4) are involved in regulating root growth under control conditions as well as modulating root system architecture in response to salt stress. Our results suggest interesting patterns of redundancy within subclass 1 SnRK2 protein kinases, with SnRK2.1, SnRK2.5, and SnRK2.9 controlling root growth under nonstress conditions and SnRK2.4 and SnRK2.10 acting mostly in response to salinity. We propose that subclass 1 SnRK2s function in root development under salt stress by affecting the transcript levels of aquaporins, as well as CYP79B2, an enzyme involved in auxin biosynthesis.
© 2020 American Society of Plant Biologists. All Rights Reserved.
Figures




Comment in
-
Rapid Changes: Abscisic Acid-Independent SnRK2s Target mRNA Decay.Plant Physiol. 2020 Jan;182(1):449. doi: 10.1104/pp.19.01435. Plant Physiol. 2020. PMID: 31908322 Free PMC article. No abstract available.
References
-
- Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci 196: 67–76 - PubMed
-
- Boudsocq M, Barbier-Brygoo H, Laurière C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279: 41758–41766 - PubMed
-
- Boudsocq M, Droillard MJ, Barbier-Brygoo H, Laurière C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63: 491–503 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources