Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan;19(1):77-85.
doi: 10.1038/s41563-019-0487-0. Epub 2019 Sep 30.

Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells

Affiliations

Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells

Sebastian Ott et al. Nat Mater. 2020 Jan.

Abstract

The reduction of Pt content in the cathode for proton exchange membrane fuel cells is highly desirable to lower their costs. However, lowering the Pt loading of the cathodic electrode leads to high voltage losses. These voltage losses are known to originate from the mass transport resistance of O2 through the platinum-ionomer interface, the location of the Pt particle with respect to the carbon support and the supports' structures. In this study, we present a new Pt catalyst/support design that substantially reduces local oxygen-related mass transport resistance. The use of chemically modified carbon supports with tailored porosity enabled controlled deposition of Pt nanoparticles on the outer and inner surface of the support particles. This resulted in an unprecedented uniform coverage of the ionomer over the high surface-area carbon supports, especially under dry operating conditions. Consequently, the present catalyst design exhibits previously unachieved fuel cell power densities in addition to high stability under voltage cycling. Thanks to the Coulombic interaction between the ionomer and N groups on the carbon support, homogeneous ionomer distribution and reproducibility during ink manufacturing process is ensured.

PubMed Disclaimer

References

    1. US DRIVE Partnership. Fuel Cell Technical Team Roadmap, June 2013 https://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf (2013).
    1. Ohma, A. et al. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan. Electrochimica Acta 56, 10832–10841 (2011). - DOI
    1. Ohma, A., Fushinobu, K. & Okazaki, K. Influence of Nafion film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell. Electrochimica Acta 55, 8829–8838 (2010). - DOI
    1. Jinnouchi, R., Kudo, K., Kitano, N. & Morimoto, Y. Molecular ynamics simulations on O2 permeation through Nafion ionomer on platinum surface. Electrochimica Acta 188, 767–776 (2016). - DOI
    1. Shinozaki, K., Morimoto, Y., Pivovar, B. S. & Kocha, S. S. Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation. J. Power Source. 325, 745–751 (2016). - DOI

LinkOut - more resources