Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 10:12:2809-2817.
doi: 10.2147/IDR.S215129. eCollection 2019.

Functional characteristics of CYP3A4 allelic variants on the metabolism of loperamide in vitro

Affiliations

Functional characteristics of CYP3A4 allelic variants on the metabolism of loperamide in vitro

Qian-Meng Lin et al. Infect Drug Resist. .

Abstract

Background: Cytochrome P450 3A4 (CYP3A4) appears to be genetically polymorphic, which in turn contributes to interindividual variability in response to therapeutic drugs. Loperamide, identified as a CYP3A4 substrate, is prone to misuse and abuse and has high risks of life-threatening cardiotoxicity.

Methods: Thus, this study is designed to evaluate the enzymatic characteristics of 29 CYP3A4 alleles toward loperamide in vitro, including the 7 novel CYP3A4 variants (*28-*34). The incubation system (containing CYP3A4 enzyme, cytochrome b5, 0.5-20 μM loperamide, potassium phosphate buffer and nicotinamide adenine dinucleotide phosphate) was subject to 40-mins incubation at 37°C and the concentrations of N-demethylated loperamide were quantified by UPLC-MS/MS.

Results: As a result, CYP3A4.6, .17, .20 and .30 showed extremely low activity or no activity and the rest of CYP3A4 variants presented varying degrees of decrements in catalytical activities when compared with CYP3A4.1.

Conclusion: As the first study to identify the properties of these CYP3A4 variants toward loperamide metabolism, our investigation may establish the genotype-phenotype relationship for loperamide, predict an individual's capability in response to loperamide, and provide some guidance of clinical medication and treatment for loperamide.

Keywords: CYP3A4; cardiotoxicity; genetic polymorphism; interindividual variability; loperamide; misuse and abuse; personalized treatment.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
The transformation of loperamide to its main metabolite N-demethylated loperamide (DLOP).
Figure 2
Figure 2
UPLC-MS/MS chromatographs of N-demethylated loperamide and midazolam (10 μg/mL midazolam) in the 200-μL incubation system: (A) without loperamide and midazolam; (B) with activity-abolished microsomes and spiked with 0.25 μM N-demethylated loperamide; (C) incubating with 20 μM loperamide and 1 pmol CYP3A4.1. Abbreviations: CYP3A4, cytochrome P450 3A4; MRM, multiple reaction monitoring.
Figure 3
Figure 3
Michaelis–Menten curve of the enzymatic activities of the wild-type CYP3A4 and other CYP3A4 variants on loperamide metabolism. Data are presented as mean ± SD of 3 parallel experiments. The variants with designated allele names have been arranged into 6 groups (A–F). Abbreviation: CYP3A4, cytochrome P450 3A4.
Figure 4
Figure 4
Relative clearance of CYP3A4 variants toward loperamide metabolism compared with the wild type, arranged in the order. Notes: Significant differences between the wild-type CYP3A4 and CYP3A4 variants analyzed by the mean of one-way ANOVA with Dunnett’s test, *P<0.05, **P<0.01. Abbreviation: CYP3A4, cytochrome P450 3A4.

Similar articles

Cited by

References

    1. Sheng J, Tran PN, Li Z, et al. Characterization of loperamide-mediated block of hERG channels at physiological temperature and its proarrhythmia propensity. J Pharmacol Toxicol Methods. 2017;88:109–122. doi:10.1016/j.vascn.2017.08.006 - DOI - PubMed
    1. Niemi M, Tornio A, Pasanen MK, Fredrikson H, Neuvonen PJ, Backman JT. Itraconazole, gemfibrozil and their combination markedly raise the plasma concentrations of loperamide. Eur J Clin Pharmacol. 2006;62:463–472. doi:10.1007/s00228-006-0133-z - DOI - PubMed
    1. Mukwaya G, MacGregor T, Hoelscher D, et al. Interaction of ritonavir-boosted tipranavir with loperamide does not result in loperamide-associated neurologic side effects in healthy volunteers. Antimicrob Agents Chemother. 2005;49:4903–4910. doi:10.1128/AAC.49.12.4903-4910.2005 - DOI - PMC - PubMed
    1. Jaffe JH, Kanzler M, Green J. Abuse potential of loperamide. Clin Pharmacol Ther. 1980;28:812–819. doi:10.1038/clpt.1980.239 - DOI - PubMed
    1. Miller H, Panahi L, Tapia D, Tran A, Bowman JD. Loperamide misuse and abuse. J Am Pharm Assoc. 2017;57:S45–S50. doi:10.1016/j.japh.2016.12.079 - DOI - PubMed