Metal-Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles
- PMID: 31573181
- DOI: 10.1021/acsnano.9b05521
Metal-Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles
Abstract
The intracellular delivery of functional nanoparticles (NPs) and the release of therapeutic payloads at a target site are central issues for biomedical applications. However, the endosomal entrapment of NPs typically results in the degradation of active cargo, leading to poor therapeutic outcomes. Current advances to promote the endosomal escape of NPs largely involve the use of polycationic polymers and cell-penetrating peptides (CPPs), which both can suffer from potential toxicity and convoluted synthesis/conjugation processes. Herein, we report the use of metal-phenolic networks (MPNs) as versatile and nontoxic coatings to facilitate the escape of NPs from endo/lysosomal compartments. The MPNs, which were engineered from the polyphenol tannic acid and FeIII or AlIII, enabled the endosomal escape of both inorganic (mesoporous silica) and organic (polystyrene and melamine resin) NPs owing to the "proton-sponge effect" arising from the buffering capacity of MPNs. Postfunctionalization of the MPN-coated NPs with low-fouling polymers did not impair the endosomal escape, indicating the modular and generalizable nature of this approach. We envisage that the ease of fabrication, versatility, low cytotoxicity, and promising endosomal escape performance displayed by the MPN coatings offer opportunities for such coatings to be used for the efficient delivery of cytoplasm-targeted therapeutics using NPs.
Keywords: bio−nano interactions; escape mechanism; intracellular trafficking; polyphenols; surface modification.
Similar articles
-
Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles.Biochimie. 2019 May;160:61-75. doi: 10.1016/j.biochi.2019.02.012. Epub 2019 Feb 21. Biochimie. 2019. PMID: 30797879 Review.
-
Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.Nanomedicine (Lond). 2019 Jan;14(2):215-223. doi: 10.2217/nnm-2018-0326. Epub 2018 Dec 4. Nanomedicine (Lond). 2019. PMID: 30511881 Review.
-
Conjugation of Oligo-His Peptides to Magnetic γ-Fe2O3@SiO2 Core-Shell Nanoparticles Promotes Their Access to the Cytosol.ACS Appl Mater Interfaces. 2022 Apr 6;14(13):15021-15034. doi: 10.1021/acsami.2c01346. Epub 2022 Mar 23. ACS Appl Mater Interfaces. 2022. PMID: 35319860
-
Advancing endosomal escape of polymeric nanoparticles: towards improved intracellular delivery.Mater Horiz. 2025 Jun 3;12(11):3622-3632. doi: 10.1039/d4mh01781a. Mater Horiz. 2025. PMID: 40045821 Review.
-
Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering.Biomaterials. 2014 Aug;35(26):7488-500. doi: 10.1016/j.biomaterials.2014.05.020. Epub 2014 Jun 3. Biomaterials. 2014. PMID: 24906344
Cited by
-
YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles.Adv Sci (Weinh). 2024 Jan;11(2):e2302965. doi: 10.1002/advs.202302965. Epub 2023 Nov 9. Adv Sci (Weinh). 2024. PMID: 37946710 Free PMC article.
-
Versatile Polymer Nanocapsules via Redox Competition.Angew Chem Int Ed Engl. 2021 Dec 6;60(50):26357-26362. doi: 10.1002/anie.202110829. Epub 2021 Nov 5. Angew Chem Int Ed Engl. 2021. PMID: 34580967 Free PMC article.
-
Enhancing Dendritic Cell Activation Through Manganese-Coated Nanovaccine Targeting the cGAS-STING Pathway.Int J Nanomedicine. 2024 Jan 11;19:263-280. doi: 10.2147/IJN.S438359. eCollection 2024. Int J Nanomedicine. 2024. PMID: 38226319 Free PMC article.
-
mRNA lipid nanoparticle formulation, characterization and evaluation.Nat Protoc. 2025 Sep;20(9):2618-2651. doi: 10.1038/s41596-024-01134-4. Epub 2025 Mar 11. Nat Protoc. 2025. PMID: 40069324 Free PMC article. Review.
-
Dissolution Rate of Nanomaterials Determined by Ions and Particle Size under Lysosomal Conditions: Contributions to Standardization of Simulant Fluids and Analytical Methods.Chem Res Toxicol. 2022 Jun 20;35(6):963-980. doi: 10.1021/acs.chemrestox.1c00418. Epub 2022 May 20. Chem Res Toxicol. 2022. PMID: 35593714 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources