Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct;51(10):1459-1474.
doi: 10.1038/s41588-019-0504-x. Epub 2019 Oct 2.

Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels

Adrienne Tin #  1   2 Jonathan Marten #  3 Victoria L Halperin Kuhns #  4 Yong Li #  5 Matthias Wuttke #  5 Holger Kirsten #  6   7 Karsten B Sieber  8 Chengxiang Qiu  9 Mathias Gorski  10   11 Zhi Yu  12   13 Ayush Giri  14   15 Gardar Sveinbjornsson  16 Man Li  17 Audrey Y Chu  18 Anselm Hoppmann  5 Luke J O'Connor  19 Bram Prins  20 Teresa Nutile  21 Damia Noce  22 Masato Akiyama  23   24 Massimiliano Cocca  25 Sahar Ghasemi  26   27 Peter J van der Most  28 Katrin Horn  6   7 Yizhe Xu  17 Christian Fuchsberger  22 Sanaz Sedaghat  29 Saima Afaq  30   31 Najaf Amin  29 Johan Ärnlöv  32   33 Stephan J L Bakker  34 Nisha Bansal  35   36 Daniela Baptista  37 Sven Bergmann  38   39   40 Mary L Biggs  41   42 Ginevra Biino  43 Eric Boerwinkle  44 Erwin P Bottinger  45 Thibaud S Boutin  3 Marco Brumat  46 Ralph Burkhardt  7   47   48 Eric Campana  46 Archie Campbell  49 Harry Campbell  50 Robert J Carroll  51 Eulalia Catamo  25 John C Chambers  30   52   53   54   55 Marina Ciullo  21   56 Maria Pina Concas  25 Josef Coresh  12 Tanguy Corre  38   39   57 Daniele Cusi  58   59 Sala Cinzia Felicita  60 Martin H de Borst  34 Alessandro De Grandi  22 Renée de Mutsert  61 Aiko P J de Vries  62 Graciela Delgado  63 Ayşe Demirkan  29   64 Olivier Devuyst  65 Katalin Dittrich  66   67 Kai-Uwe Eckardt  68   69 Georg Ehret  37 Karlhans Endlich  27   70 Michele K Evans  71 Ron T Gansevoort  34 Paolo Gasparini  25   46 Vilmantas Giedraitis  72 Christian Gieger  73   74   75 Giorgia Girotto  25   46 Martin Gögele  22 Scott D Gordon  76 Daniel F Gudbjartsson  16 Vilmundur Gudnason  77   78 German Chronic Kidney Disease StudyToomas Haller  79 Pavel Hamet  80   81 Tamara B Harris  82 Caroline Hayward  3 Andrew A Hicks  22 Edith Hofer  83   84 Hilma Holm  16 Wei Huang  85   86 Nina Hutri-Kähönen  87   88 Shih-Jen Hwang  89   90 M Arfan Ikram  29 Raychel M Lewis  4 Erik Ingelsson  91   92   93   94 Johanna Jakobsdottir  77   95 Ingileif Jonsdottir  16 Helgi Jonsson  96   97 Peter K Joshi  50 Navya Shilpa Josyula  98 Bettina Jung  10 Mika Kähönen  99 Yoichiro Kamatani  23   100 Masahiro Kanai  23   101 Shona M Kerr  3 Wieland Kiess  7   66   67 Marcus E Kleber  63 Wolfgang Koenig  102   103   104 Jaspal S Kooner  53   54   105   106 Antje Körner  7   66   67 Peter Kovacs  107 Bernhard K Krämer  63 Florian Kronenberg  108 Michiaki Kubo  109 Brigitte Kühnel  73 Martina La Bianca  25 Leslie A Lange  110 Benjamin Lehne  30 Terho Lehtimäki  87 Lifelines Cohort StudyJun Liu  29   111 Markus Loeffler  6   7 Ruth J F Loos  112   113 Leo-Pekka Lyytikäinen  87 Reedik Magi  79 Anubha Mahajan  114   115 Nicholas G Martin  76 Winfried März  63   116   117 Deborah Mascalzoni  22 Koichi Matsuda  118 Christa Meisinger  119   120 Thomas Meitinger  103   121   122 Andres Metspalu  79 Yuri Milaneschi  123 V. A. Million Veteran ProgramChristopher J O'Donnell  124   125 Otis D Wilson  126 J Michael Gaziano  125   127 Pashupati P Mishra  87 Karen L Mohlke  128 Nina Mononen  87 Grant W Montgomery  129 Dennis O Mook-Kanamori  61   130 Martina Müller-Nurasyid  103   131   132   133 Girish N Nadkarni  112   134 Mike A Nalls  135   136 Matthias Nauck  27   137 Kjell Nikus  138   139 Boting Ning  140 Ilja M Nolte  28 Raymond Noordam  141 Jeffrey R O'Connell  142 Isleifur Olafsson  143 Sandosh Padmanabhan  144 Brenda W J H Penninx  123 Thomas Perls  145 Annette Peters  74   75   103 Mario Pirastu  146 Nicola Pirastu  50 Giorgio Pistis  147 Ozren Polasek  148   149 Belen Ponte  150 David J Porteous  49   151 Tanja Poulain  7 Michael H Preuss  112 Ton J Rabelink  62   152 Laura M Raffield  128 Olli T Raitakari  153   154   155 Rainer Rettig  156 Myriam Rheinberger  10 Kenneth M Rice  42 Federica Rizzi  157   158 Antonietta Robino  25 Igor Rudan  50 Alena Krajcoviechova  159   160 Renata Cifkova  159   161 Rico Rueedi  38   39 Daniela Ruggiero  21   56 Kathleen A Ryan  162 Yasaman Saba  163 Erika Salvi  157   164 Helena Schmidt  165 Reinhold Schmidt  83 Christian M Shaffer  51 Albert V Smith  78 Blair H Smith  166 Cassandra N Spracklen  128 Konstantin Strauch  131   132 Michael Stumvoll  167 Patrick Sulem  16 Salman M Tajuddin  71 Andrej Teren  7   168 Joachim Thiery  7   47 Chris H L Thio  28 Unnur Thorsteinsdottir  16 Daniela Toniolo  60 Anke Tönjes  169 Johanne Tremblay  80   170 André G Uitterlinden  171 Simona Vaccargiu  146 Pim van der Harst  172   173   174 Cornelia M van Duijn  29   111   175 Niek Verweij  172   176 Uwe Völker  27   177 Peter Vollenweider  178 Gerard Waeber  178 Melanie Waldenberger  73   74   103 John B Whitfield  76 Sarah H Wild  179 James F Wilson  3   50 Qiong Yang  140 Weihua Zhang  30   53 Alan B Zonderman  71 Murielle Bochud  57 James G Wilson  180 Sarah A Pendergrass  181 Kevin Ho  182   183 Afshin Parsa  184   185 Peter P Pramstaller  22 Bruce M Psaty  186   187 Carsten A Böger  10   188 Harold Snieder  28 Adam S Butterworth  189 Yukinori Okada  190   191 Todd L Edwards  192   193 Kari Stefansson  16 Katalin Susztak  9 Markus Scholz  6   7 Iris M Heid  11 Adriana M Hung  126   193 Alexander Teumer  26   27 Cristian Pattaro  22 Owen M Woodward  4 Veronique Vitart  3 Anna Köttgen  194   195
Affiliations

Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels

Adrienne Tin et al. Nat Genet. 2019 Oct.

Abstract

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.

PubMed Disclaimer

Figures

Figure 1 ∣
Figure 1 ∣. Trans-ethnic GWAS meta-analysis identifies 183 loci associated with serum urate.
Outer ring: Dot size represents the genetic effect size of the index SNP at each labeled locus on serum urate. Blue band: −log10(two-sided meta-analysis P-value) for association with serum urate (n = 457,690), by chromosomal position (GRCh37 (hg19) reference build). Red line indicates genome-wide significance (P = 5 × 10−8). Blue gene labels indicate novel loci, gray labels loci reported in previous GWAS of serum urate. Green band: −log10(two-sided meta-analysis P-value) for association with gout (n = 763,813), by chromosomal position. Red line indicates genome-wide significance (P = 5 × 10−8). Inner band: Dots represent index SNPs with significant heterogeneity and are color-coded according to its source: green for ancestry-related heterogeneity (Panc-het < 2.7 × 10−4 (0.05/183)), red for residual heterogeneity (Pres-het < 2.7 × 10−4), and yellow for both (Panc-het and Pres-het < 2.7 × 10−4). Loci are labeled with the gene closest to the index SNP. Panc-het and Pres-het were generated by MR-MEGA (Methods).
Figure 2 ∣
Figure 2 ∣. A genetic risk score (GRS) for serum urate improves gout risk prediction.
a, Histogram of the urate GRS among 334,880 European ancestry participants of the UK Biobank. The y-axes show the number of individuals (left) and the prevalence of gout (right), the x-axis shows categories of the urate GRS. The units on the x-axis represent genetically predicted serum urate levels (mg/dl) compared to individuals without any urate-increasing alleles. b, Age- and sex-adjusted odds ratio of gout (y-axis) by GRS category (x-axis) among 334,880 European-ancestry participants of the UK Biobank, comparing each category to the most prevalent category (4.74 < GRS ≤ 5.02) with error bars representing 95% confidence intervals; * denotes logistic regression two-sided P-value < 0.05, ** denotes P < 5 × 10−10, and *** P < 5 × 10−100. c, Comparison of the receiver operating characteristic (ROC) curves of different prediction models of gout: genetic (GRS only; red), demographic (age + sex; green), and combined (GRS + age + sex; blue). y-axis: sensitivity, x-axis: specificity. At the optimal cut points determined by the maximum of the Youden’s index, the sensitivity of the combined model was 84% and specificity was 68%.
Figure 3 ∣
Figure 3 ∣. Serum urate shows widespread genetic correlations with cardio-metabolic risk factors and diseases.
The Circos plot shows significant genome-wide genetic correlations between serum urate and 214 complex traits or diseases (genetic correlation P < 6.6 × 10−5 = 0.05/748 traits tested), with bar height proportional to the genetic correlation coefficient (rg) estimate for each trait and coloring according to its direction (dark blue, rg > 0; light blue, rg < 0). Traits and diseases are labeled on the outside of the plot and grouped into nine different categories. Each category is color-coded (inner ring, inset). The greatest genetic correlation was observed with gout (rg = 0.92, P = 3.3 × 10−70). Genetic correlations with multiple cardio-metabolic risk factors and diseases reflect their known directions from observational studies. The serum urate association statistics for estimating genetic correlations were from the European-ancestry meta-analysis (n = 288,649).
Figure 4 ∣
Figure 4 ∣. Genes expressed in urate-associated loci are enriched in kidney tissue and pathways.
a, Grouped physiological systems (x-axis) that were tested individually for enrichment of expression of genes in urate-associated loci among European-ancestry individuals (n = 288,649) using DEPICT are shown as a bar plot, with the −log10(enrichment P-value) on the y-axis. Significantly enriched systems are labeled and highlighted in blue (enrichment false discovery rate (FDR) < 0.01). b, Correlated (r > 0.2) meta-gene sets that were strongly enriched (enrichment FDR < 0.01) for genes mapping into urate-associated loci among European-ancestry individuals (n = 288,649). Thickness of the edges represents the magnitude of the correlation coefficient, node size, color and intensity represent the number of clustered gene sets, gene set origin, and enrichment P-value, respectively.
Figure 5 ∣
Figure 5 ∣. Prioritization of p.Thr139Ile at HNF4A and functional study of HNF4A regulation of ABCG2 transcription.
a, Graph shows credible set size (x-axis) against the posterior probability of association (PPA; y-axis) for each of 1,453 SNPs with PPA > 1% in 114 99% credible sets. Triangles mark missense SNPs, with size proportional to their Combined Annotation Dependent Depletion (CADD) score. Blue triangles indicate missense variants mapping into small (≤ 5 SNPs) credible sets or with high PPA (≥ 50%). b, Predicted HNF1A or HNF4A binding sites in the promoter region of ABCG2 using LASAGNA 2.0, the consensus affinity sequence, and the P-value of likely matches based on nucleotide position within a consensus transcription factor binding site (Methods). c, Relative luciferase activity and transactivation of ABCG2 promoter in cells transfected with variable amount of HNF1A or HNF4A constructs (mean (line) ± s.e.m. (whiskers), n = 3 independent experiments, P-values calculated with ordinary one-way ANOVA with Tukey’s multiple comparison test). d, Position of p.Thr139Ile (T139I) in DNA binding domain/hinge region within HNF4A homodimer structure (PDB 4IQR). e, Relative luciferase activity and transactivation of ABCG2 promoter in cells transfected with variable amount of constructs (ng’s of transfected DNA) of wild-type HNF4A (threonine) or isoleucine at position 139 (± s.e.m., n = 3 independent experiments, P-values calculated with ordinary one-way ANOVA with Tukey’s multiple comparison test).
Figure 6 ∣
Figure 6 ∣. Co-localization of urate-association signals with gene expression in cis in kidney tissues.
Serum urate association signals identified among European ancestry individuals (n = 288,649) were tested for co-localization with all eQTLs where the eQTL cis-window overlapped (±100 kb) the index SNP. Genes with ≥1 positive co-localization (posterior probability of one common causal variant, H4, ≥ 0.80) in a kidney tissue are illustrated with the respective index SNP and transcript (y-axis). Co-localizations across all tissues (x-axis) are illustrated as dots, where the size of the dots indicates the posterior probability of the co-localization. Negative co-localizations (posterior probability of H4 < 0.80) are marked in gray, while the positive co-localizations are color-coded relative to the change in expression with a color gradient as indicated in the legend.

References

    1. Kuo CF, Grainge MJ, Zhang W & Doherty M Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 11, 649–62 (2015). - PubMed
    1. Li X et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 357, j2376 (2017). - PMC - PubMed
    1. Jinno S, Hasegawa K, Neogi T, Goto T & Dubreuil M Trends in Emergency Department Visits and Charges for Gout in the United States between 2006 and 2012. J Rheumatol 43, 1589–92 (2016). - PMC - PubMed
    1. Kuo CF, Grainge MJ, Mallen C, Zhang W & Doherty M Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann Rheum Dis 74, 661–7 (2015). - PMC - PubMed
    1. Mikuls TR, Farrar JT, Bilker WB, Fernandes S & Saag KG Suboptimal physician adherence to quality indicators for the management of gout and asymptomatic hyperuricaemia: results from the UK General Practice Research Database (GPRD). Rheumatology (Oxford) 44, 1038–42 (2005). - PubMed

Methods-only References

    1. Zhu Q et al. T130I mutation in HNF-4alpha gene is a loss-of-function mutation in hepatocytes and is associated with late-onset Type 2 diabetes mellitus in Japanese subjects. Diabetologia 46, 567–73 (2003). - PubMed
    1. The Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48, 1279–1283 (2016). - PMC - PubMed
    1. Abecasis GR et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012). - PMC - PubMed
    1. Fuchsberger C, Taliun D, Pramstaller PP & Pattaro C GWAtoolbox: an R package for fast quality control and handling of genome-wide association studies meta-analysis data. Bioinformatics 28, 444–5 (2012). - PubMed
    1. Marchini J & Howie B Genotype imputation for genome-wide association studies. Nat Rev Genet 11, 499–511 (2010). - PubMed

Publication types

MeSH terms