Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan 21;59(2):205-211.
doi: 10.1021/acs.biochem.9b00807. Epub 2019 Oct 15.

Chemogenetic Control of Protein Anchoring to Endomembranes in Living Cells with Lipid-Tethered Small Molecules

Affiliations

Chemogenetic Control of Protein Anchoring to Endomembranes in Living Cells with Lipid-Tethered Small Molecules

Akinobu Nakamura et al. Biochemistry. .

Abstract

The self-localizing ligand-induced protein translocation (SLIPT) system is an emerging platform that controls protein localization in living cells using synthetic self-localizing ligands (SLs). Here, we report a chemogenetic SLIPT system for inducing protein translocation from the cytoplasm to the surface of the endoplasmic reticulum (ER) and Golgi membranes, referred to as endomembranes. By screening a series of lipid-trimethoprim (TMP) conjugates, we found oleic acid-tethered TMP (oleTMP) to be the optimal SL that efficiently relocated and anchored Escherichia coli dihydrofolate reductase (eDHFR)-fusion proteins to endomembranes. We showed that oleTMP mediated protein anchoring to endomembranes within minutes and could be reversed by the addition of free TMP. We also applied the endomembrane SLIPT system to artificially activate endomembrane Ras and inhibit the active nuclear transport of extracellular signal-regulated kinase (ERK), demonstrating its applicability for manipulating biological processes in living cells. We envision that the present oleTMP-based SLIPT system, which affords rapid and reversible control of protein anchoring to endomembranes, will offer a new unique tool for the study and control of spatiotemporally regulated cell signaling processes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources