Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct;19(10):1279-1291.
doi: 10.1089/ast.2018.1969.

The Search for a Signature of Life on Mars: A Biogeomorphological Approach

Affiliations

The Search for a Signature of Life on Mars: A Biogeomorphological Approach

Dov Corenblit et al. Astrobiology. 2019 Oct.

Abstract

Geological evidence shows that life on Earth evolved in line with major concomitant changes in Earth surface processes and landforms. Biogeomorphological characteristics, especially those involving microorganisms, are potentially important facets of biosignatures on Mars and are generating increasing interest in astrobiology. Using Earth as an analog provides reasons to suspect that past or present life on Mars could have resulted in recognizable biogenic landforms. Here, we discuss the potential for, and limitations of, a biogeomorphological approach to identifying the subsets of landforms that are modulated or created through biological processes and thus present signatures of life on Mars. Subsets especially involving microorganisms that are potentially important facets of biosignatures on Mars are proposed: (i) weathering features, biocrusts, patinas, and varnishes; (ii) microbialites and microbially induced sedimentary structures (MISS); (iii) bioaccumulations of skeletal remains; (iv) degassing landforms; (v) cryoconites; (vi) self-organized patterns; (vii) unclassified non-analog landforms. We propose a biogeomorphological frequency histogram approach to identify anomalies/modulations in landform properties. Such detection of anomalies/modulations will help track a biotic origin and lead to the development of an integrative multiproxy and multiscale approach combining morphological, structural, textural, and geochemical expertise. This perspective can help guide the choice of investigation sites for future missions and the types and scales of observations to be made by orbiters and rovers.

Keywords: Biogeomorphology; Landform shape; Landform structure; Landform texture; Life signatures on Mars; Microorganisms.

PubMed Disclaimer

LinkOut - more resources