Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 1;19(7):foz065.
doi: 10.1093/femsyr/foz065.

Oenological potential of non-Saccharomyces yeasts to mitigate effects of climate change in winemaking: impact on aroma and sensory profiles of Treixadura wines

Affiliations

Oenological potential of non-Saccharomyces yeasts to mitigate effects of climate change in winemaking: impact on aroma and sensory profiles of Treixadura wines

David Castrillo et al. FEMS Yeast Res. .

Abstract

The effects of climate change on wine include high-alcohol content, low acidity and aroma imbalance. The potential of several non-Saccharomyces wine yeasts to mitigate these effects was evaluated by sequential fermentation of Treixadura grape must. Fermentations with only Saccharomyces cerevisiae ScXG3 and a spontaneous process were used as control assays. All yeast strains were obtained from the yeast collection of Estación de Viticultura e Enoloxía de Galicia (EVEGA), Galicia, Spain. Fermentation kinetics as well as yeast dynamics and implantation ability varied depending on inoculated yeasts. In addition, the results showed significant differences in the chemical composition of wine. Starmerella bacillaris 474 reduced the alcohol content (1.1% vol) and increased the total acidity (1.2 g L-1) and glycerol of wines. Fermentation with Lachancea thermotolerans Lt93 and Torulaspora delbrueckii Td315 also decreased the alcohol content, although to a lesser extent (0.3% and 0.7% vol, respectively); however, their effect on wine acidity was less significant. The wines also differed in their concentration of volatile compounds and sensory characteristics. Thus, wines made with Metschnikowia fructicola Mf278 and S. cerevisiae ScXG3 had higher content of esters, acetates and some acids than other wines, and were most appreciated by tasters due to their fruity character and overall impression.

Keywords: Treixadura wine; chemical composition; climate change mitigation; non-Saccharomyces; sensory profile; sequential fermentation.

PubMed Disclaimer

Publication types