Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 15:384:121324.
doi: 10.1016/j.jhazmat.2019.121324. Epub 2019 Sep 26.

Effect of microbial nutrients supply on coal bio-desulfurization

Affiliations

Effect of microbial nutrients supply on coal bio-desulfurization

Fenwu Liu et al. J Hazard Mater. .

Abstract

Research on coal desulfurization is very important for economic, social, and environmentally sustainable development. In this study, three batches of shake flask experiments were conducted for coal bio-desulfurization using Acidithiobacillus ferrooxidans to explore the relationship between microbial nutrients (iron-free M9 K medium) supply and coal bio-desulfurization efficiency. The results showed that the removal rates of pyritic sulfur and total sulfur from coal effectively increased following reintroduction of coal into the filtrate from previous batch. The removal rates of pyritic sulfur and total sulfur were 55.6% and 10.0%, 77.1% and 16.1%, and 86.5% and 28.2%, respectively, in the three batch experiments without iron-free M9 K medium addition. In contrast, the removal rates of pyritic sulfur and total sulfur reached 87.5% and 28.2%, 89.1% and 31.6%, and 92.0% and 29.1%, respectively, in the three batch experiments with 6.7% iron-free M9 K medium addition. However, addition of excessive iron-free M9 K medium was detrimental to coal bio-desulfurization because of the synthesis of jarosite (MFe3(SO4)2(OH)6, M = K+, NH4+) and gypsum (CaSO4·2H2O), which further declined the pyritic sulfur bio-oxidation efficiency and total sulfur removal efficiency.

Keywords: Acidithiobacillus ferrooxidans; Coal; Microbial nutrients; Pyritic sulfur.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources