Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 27;10(30):7172-7176.
doi: 10.1039/c9sc02619c. eCollection 2019 Aug 14.

Molecular recognition of planar and non-planar aromatic hydrocarbons through multipoint Ag-π bonding in a dinuclear metallo-macrocycle

Affiliations

Molecular recognition of planar and non-planar aromatic hydrocarbons through multipoint Ag-π bonding in a dinuclear metallo-macrocycle

Kenichiro Omoto et al. Chem Sci. .

Abstract

Exploration of a novel structural motif of host-guest interactions is one of the most fundamental topics to develop macrocycle-based host-guest/supramolecular systems. Herein, we present an unprecedented mode of inclusion of aromatic hydrocarbons into a macrocyclic cavity via multipoint Ag-π bonding as a driving force. A dinuclear AgI-macrocycle encapsulated one molecule of anthracene, a typical planar aromatic hydrocarbon, in solution and in the solid state. Single-crystal X-ray diffraction analysis of the host-guest inclusion complex revealed the binding of anthracene via multipoint Ag-π bonding to both AgI ions arranged within the open-ended nano-cavity of the dinuclear AgI-macrocycle. Notably, this binding motif based on Ag-π bonding was also applied to the inclusion of triptycene, a non-planar aromatic hydrocarbon with a steric tripodal structure, to evaluate the rotational motion of the molecular paddle-wheel in the AgI-macrocycle.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. (a) Schematic representation of the binding mode of a non-substituted aromatic hydrocarbon within a macrocyclic host via vast-area contacts. (b) The chemical structure of a dinuclear AgI-macrocycle [Ag2L1X2](SbF6)2 and the schematic representation of the binding modes of planar and non-planar aromatic hydrocarbons via multipoint Ag–π bonding.
Fig. 2
Fig. 2. Partial 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.07 mM) in the presence of (a) 0.0, (b) 0.5, (c) 1.0, (d) 1.5 and (e) 2.0 eq. of anthracene (Ant) (500 MHz, CDCl3, 220 K). Antin represents the signals of the included Ant.
Fig. 3
Fig. 3. Crystal structure of Ant⊂[Ag2L1(CH2Cl2)2](SbF6)2. (a) Space filling model and (b) ORTEP view (50% probability level) of the partial structure (solvents, side-alkyloxy chains and counter anions in (a) are omitted for clarity). Ag: magenta, C: grey, C of Ant: blue, Cl: pale green, F: yellow, H: white, N: light blue and Sb: purple.
Fig. 4
Fig. 4. Partial 1H NMR spectra (500 MHz, CDCl3, 220 K) of [Ag2L1X2](SbF6)2 (0.11 mM) in the presence of (a) 0.0, (b) 0.5, (c) 1.0, (d) 1.5 and (e) 2.0 eq. of triptycene (Trip). Hexyl represents the signal of side-alkyloxy chains of L1.
Fig. 5
Fig. 5. Schematic representation of the plausible binding modes and molecular dynamics of Trip⊂[Ag2L1](SbF6)2. (a) Plausible side cross-sectional views of Trip⊂[Ag2L1](SbF6)2 where AgI ions coordinate to the π-planes of Trip in an anti or a syn manner. (b–d) Plausible side cross-sectional views of the rotational motion of Trip, where Trip exhibits faster intramolecular rotational motion (b and c) and a slower intermolecular guest exchange (d) than the timescale of 1H NMR observation.

References

    1. Pedersen C. J. Angew. Chem., Int. Ed. Engl. 1988;27:1021–1027.
    2. Kimura E. Tetrahedron. 1992;48:6175–6217.
    3. Lagona J., Mukhopadhyay P., Chakrabarti S., Isaacs L. Angew. Chem., Int. Ed. 2005;44:4844–4870. - PubMed
    4. Steed J. W. and Atwood J. L., Supramolecular Chemistry, Wiley, New York, 2nd edn, 2009.
    5. Davis F. and Higson S., Macrocycles, John Wiley & Sons, Ltd, Chichester, 2011.
    6. Crini G. Chem. Rev. 2014;114:10940–10975. - PubMed
    7. Segawa Y., Yagi A., Matsui K., Itami K. Angew. Chem., Int. Ed. 2016;55:5136–5158. - PubMed
    8. Liu Z., Nalluri S. K. M., Stoddart J. F. Chem. Soc. Rev. 2017;46:2459–2478. - PubMed
    9. Kakuta T., Yamagishi T., Ogoshi T. Acc. Chem. Res. 2018;51:1656–1666. - PubMed
    1. Christensen J. J., Eatough D. J., Izatt R. M. Chem. Rev. 1974;74:351–384. - PubMed
    2. Lehn J.-M. Angew. Chem., Int. Ed. Engl. 1988;27:89–112.
    3. Cram D. J. Angew. Chem., Int. Ed. Engl. 1988;27:1009–1020.
    4. Homden D. M., Redshaw C. Chem. Rev. 2008;108:5086–5130. - PubMed
    5. Amouri H., Desmarets C., Moussa J. Chem. Rev. 2012;112:2015–2041. - PubMed
    6. Ariga K., Ito H., Hill J. P., Tsukube H. Chem. Soc. Rev. 2012;41:5800–5835. - PubMed
    7. Cai J., Sessler J. L. Chem. Soc. Rev. 2014;43:6198–6213. - PubMed
    1. Clyde-Watson Z., Vidal-Ferran A., Twyman L. J., Walter C. J., McCallien D. W. J., Fanni S., Bampos N., Wylie R. S., Sanders J. K. M. New J. Chem. 1998;22:493–502.
    2. Breslow R., Dong S. D. Chem. Rev. 1998;98:1997–2011. - PubMed
    3. Raynal M., Ballester P., Vidal-Ferran A., van Leeuwen P. W. N. M. Chem. Soc. Rev. 2014;43:1734–1787. - PubMed
    1. Ghadiri M. R., Granja J. R., Buehler L. K. Nature. 1994;369:301–304. - PubMed
    2. Lisbjerg M., Valkenier H., Jessen B. M., Al-Kerdi H., Davis A. P., Pittelkow M. J. Am. Chem. Soc. 2015;137:4948–4951. - PubMed
    1. Dietrich-Buchecker C. O., Sauvage J.-P., Lern J. M. J. Am. Chem. Soc. 1984;106:3043–3045.
    2. Chichak K. S., Cantrill S. J., Pease A. R., Chiu S.-H., Cave G. W. V., Atwood J. L., Stoddart J. F. Science. 2004;304:1308–1312. - PubMed
    3. Kilah N. L., Wise M. D., Serpell C. J., Thompson A. L., White N. G., Christensen K. E., Beer P. D. J. Am. Chem. Soc. 2010;132:11893–11895. - PubMed
    4. Ayme J.-F., Beves J. E., Leigh D. A., McBurney R. T., Rissanen K., Schultz D. Nat. Chem. 2012;4:15–20. - PubMed

LinkOut - more resources