Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 21;10(32):7549-7553.
doi: 10.1039/c9sc01375j. eCollection 2019 Aug 28.

A natural solution to photoprotection and isolation of the potent polyene antibiotic, marinomycin A

Affiliations

A natural solution to photoprotection and isolation of the potent polyene antibiotic, marinomycin A

Christopher S Bailey et al. Chem Sci. .

Abstract

The photoprotection and isolation of marinomycin A using sporopollenin exine capsules (SpECs) derived from the spores of the plant Lycopodium clavatum is described. The marinomycins have a particularly short half-life in natural light, which severely impacts their potential biological utility given that they display potent antibiotic and anticancer activity. The SpEC encapsulation of the marinomycin A dramatically increases the half-life of the polyene macrodiolide to the direct exposure to UV radiation by several orders of magnitude, thereby making this a potentially useful strategy for other light sensitive bioactive agents. In addition, we report that the SpECs can also be used to selectively extract culture broths that contain the marinomycins, which provides a significantly higher recovery than with conventional XAD resins and provides concomitant photoprotection.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. The impact of the photoisomerization and photoprotection on marinomycin A (1).
Fig. 1
Fig. 1. SEM of SpECs from Lycopodium clavatum.
Fig. 2
Fig. 2. Marinomycin A degradation under direct UV radiation, as determined by the concentration of remaining marinomycin A.
Fig. 3
Fig. 3. Relative uptake of marinomycin A (1) by 50 mg of XAD 7HP, XAD 16N and SpECs. (A) Uptake of marinomycin A (1) from a crude culture broth. Relative quantification by mass LC-MS by integration of the XIC between 997.5 and 997.6 Da. (B) Uptake of marinomycin A (1) from a aliquots of the purified compound in water. Concentration (μM) of purified marinomycin A (1) taken up by 50 mg of XAD 7HP, XAD 16N and SpECs.

References

    1. Hamilton-Miller J. M. T. Bacteriol. Rev. 1973;37:166–196. - PMC - PubMed
    2. For example see: Szczeblewski P., Laskowski T., Balka A., Borowski E., Milewksi S., J. Nat. Prod., 2018, 81 , 1540 –1545 . - PubMed
    3. Koontz J. L., Marcy J. E., Barbeau W. E., Duncan S. E. J. Agric. Food Chem. 2003;51:7111–7114. - PubMed
    1. Kwon H. C., Kauffman C. A., Jensen P. R., Fenical W. J. Am. Chem. Soc. 2006;128:1622–1632. - PubMed
    1. The synthesis of this powerful new antibiotic has attracted much interest, notable total syntheses include:

    2. Nicolaou K. C., Nold A. L., Milburn R. R., Schindler C. S., Cole K. P., Yamaguchi J. J. Am. Chem. Soc. 2007;129:1760–1768. - PubMed
    3. Evans P. A., Huang M.-H., Lawler M. J., Maroto S. Nat. Chem. 2012;4:680–684. - PubMed
    4. Nishimaru T., Kondo M., Takeshita K., Takahashi K., Ishihara J., Hatakeyama S. Angew. Chem., Int. Ed. 2014;53:8459–8462. - PubMed
    1. Wallace S., Fleming A., Wellman C. H., Beerling D. J. AoB Plants. 2011:1–18. - PMC - PubMed
    1. Brooks J., Shaw G. Nature. 1968;219:532–533. - PubMed
    2. Barrier S., Diego-Taboada A., Thomasson M. J., Madden L., Pointon J. C., Wadhawan J. D., Beckett S. T., Atkin S. L., Mackenzie G. J. Mater. Chem. 2011;21:975–981.
    3. Diego-Taboada A., Cousson P., Raynaud E., Huang Y., Lorch M., Binks B. P., Queneau Y., Boa A. N., Atkin S. L., Beckett S. T., Mackenzie G. J. Mater. Chem. 2012;22:9767–9773.