Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Oct 6;24(19):3593.
doi: 10.3390/molecules24193593.

Broccoli or Sulforaphane: Is It the Source or Dose That Matters?

Affiliations
Review

Broccoli or Sulforaphane: Is It the Source or Dose That Matters?

Yoko Yagishita et al. Molecules. .

Abstract

There is robust epidemiological evidence for the beneficial effects of broccoli consumption on health, many of them clearly mediated by the isothiocyanate sulforaphane. Present in the plant as its precursor, glucoraphanin, sulforaphane is formed through the actions of myrosinase, a β-thioglucosidase present in either the plant tissue or the mammalian microbiome. Since first isolated from broccoli and demonstrated to have cancer chemoprotective properties in rats in the early 1990s, over 3000 publications have described its efficacy in rodent disease models, underlying mechanisms of action or, to date, over 50 clinical trials examining pharmacokinetics, pharmacodynamics and disease mitigation. This review evaluates the current state of knowledge regarding the relationships between formulation (e.g., plants, sprouts, beverages, supplements), bioavailability and efficacy, and the doses of glucoraphanin and/or sulforaphane that have been used in pre-clinical and clinical studies. We pay special attention to the challenges for better integration of animal model and clinical studies, particularly with regard to selection of dose and route of administration. More effort is required to elucidate underlying mechanisms of action and to develop and validate biomarkers of pharmacodynamic action in humans. A sobering lesson is that changes in approach will be required to implement a public health paradigm for dispensing benefit across all spectrums of the global population.

Keywords: Nrf2; allometric scaling; broccoli; chemoprotection; clinical trials; glucoraphanin; myrosinase; sulforaphane; toxicity.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Scheme 1
Scheme 1
Biosynthesis of glucoraphanin, its hydrolysis to form the isothiocyanate sulforaphane, and metabolism of sulforaphane. The highly reactive isothiocyanate sulforaphane is produced in plants as an inert precursor, the glucosinolate glucoraphanin. Its biosynthetic pathway originates from the amino acid methionine and proceeds in three stages: (i) methionine side chain elongation by two methylene groups (a); (ii) formation of the core glucosinolate structure (b); (iii) secondary modification of the glucosinolate side chain (c); Upon disruption of the plant tissue integrity, glucoraphanin comes into contact with myrosinase, which catalyzes the hydrolysis of glucoraphanin to give sulforaphane (d); In mammalian cells, sulforaphane is metabolized through the mercapturic acid pathway, and can also undergo an interconversion to erucin (e).
Figure 1
Figure 1
On a weight basis, glucoraphanin (right axis) is most abundant in the seeds of the broccoli plant. Upon enzymatic conversion to sulforaphane, the capacity of extracts of these plants to induce or up-regulate phase 2 enzymes such as NQO1 in mammalian cells, follows precisely the same curve (left axis).
Figure 2
Figure 2
Distribution of daily doses of sulforaphane administered to mice as reported in the literature based on route of administration and efficacy outcome. Top panel, oral (gavage or in diet); bottom panel, intraperitoneal administration. Where necessary, dose extrapolations assumed 25 g body weight and dietary intake of 4 g food/mouse/day [38].
Figure 3
Figure 3
Distribution of oral doses of sulforaphane administered to mice in studies that included experimental examination of underlying mechanisms in vivo. Data are as reported and interpreted in the original publications. Listed mechanisms are not necessarily exclusive. Nrf2 KO: Nrf2 knockout. Some studies included comparisons of responses in wild-type and Nrf2 KO mice to impute Nrf2-dependence and are also included in the listed mechanisms (primarily “anti-inflammation”).
Figure 4
Figure 4
Urinary excretion of sulforaphane metabolites (“internal dose”) per 24 h following an initial dose with different broccoli sprout preparations from intervention studies conducted in Qidong China [63,77,78]. All analyses were conducted by isotope dilution mass spectrometry. Values are the sum of sulforaphane, sulforaphane-cysteine and sulforaphane-N-acetylcysteine for each participant. Box plots are median and 5% and 95% confidence intervals. GR 800 was a beverage prepared from a hot-water extract of 3-day old broccoli sprouts that was lyophilized, and then reconstituted in mango juice and water to deliver 800 µmole glucoraphanin (GR); SF 150 was the hot-water extract cooled to room temperature, treated with daikon to deliver myrosinase, then lyophilized and later reconstituted in mango juice and water to deliver 150 µmol of sulforaphane (SF). GR600 + SF 40 were beverages reconstituted in pineapple juice, lime juice and water from their lyophilized powders to deliver a dose of 600 µmol of GR and 40 µmol SF. In addition to beverages, a study was conducted with a commercial dietary supplement formulated as tablets constituted from lyophilized broccoli sprouts and finely milled broccoli seeds to provide glucoraphanin (75 and 150 µmol) in the presence of myrosinase.
Figure 5
Figure 5
Comparisons of published oral doses of sulforaphane administered to mice or rats and sulforaphane (tablets or sulforaphane-rich broccoli preparations) or glucoraphanin-rich broccoli preparations administered to humans. The allometric scaling of the murine doses uses the correction factor of 0.081 and those for rat doses 0.162 [145]. Human doses were based on an estimate of 70 kg body weights in each study.

References

    1. Fahey J. Brassica: Characteristics and properties. Encycl. Food Health. 2016;1:469–477.
    1. Graham S., Dayal H., Swanson M., Mittelman A., Wilkinson G. Diet in the epidemiology of cancer of the colon and rectum. J. Natl. Cancer Inst. 1978;61:709–714. - PubMed
    1. Michaud D.S., Spiegelman D., Clinton S.K., Rimm E.B., Willett W.C., Giovannucci E.L. Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. J. Natl. Cancer Inst. 1999;91:605–613. doi: 10.1093/jnci/91.7.605. - DOI - PubMed
    1. Cohen J.H., Kristal A.R., Stanford J.L. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer Inst. 2000;92:61–68. doi: 10.1093/jnci/92.1.61. - DOI - PubMed
    1. Panjwani A.A., Liu H., Fahey J.W. Crucifers and related vegetables and supplements for neurologic disorders: What is the evidence? Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:451–457. doi: 10.1097/MCO.0000000000000511. - DOI - PubMed

MeSH terms

LinkOut - more resources