Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar;6(1):10-17.
doi: 10.1007/s40588-019-0111-8. Epub 2019 Feb 13.

Respiratory epithelial cells as master communicators during viral infections

Affiliations

Respiratory epithelial cells as master communicators during viral infections

Tanya A Miura. Curr Clin Microbiol Rep. 2019 Mar.

Abstract

Purpose of review: Communication by epithelial cells during respiratory viral infections is critical in orchestrating effective anti-viral responses but also can lead to excessive inflammation. This review will evaluate studies that investigate how respiratory epithelial cells influence the behavior of immune cells and how epithelial cell/immune cell interactions contribute to antiviral responses and immunopathology outcomes.

Recent findings: Previous studies have characterized cytokine responses of virus-infected epithelial cells. More recent studies have carefully demonstrated the effects of these cytokines on cellular behaviors within the infected lung. Infected epithelial cells release exosomes that specifically regulate responses of monocytes and neighboring epithelial cells without promoting spread of virus. In contrast, rhinovirus-infected cells induce monocytes to upregulate expression of the viral receptor, promoting spread of the virus to alternate cell types. The precise alteration of PDL expression on infected epithelial cells has been shown to switch between inhibition and activation of antiviral responses.

Summary: These studies have more precisely defined the interactions between epithelial and immune cells during viral infections. This level of understanding is critical for the development of novel therapeutic strategies that promote effective antiviral responses or epithelial repair, or inhibit damaging inflammatory responses during severe respiratory viral infections.

Keywords: airway epithelial cells; influenza A virus; respiratory syncytial virus; rhinovirus.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Dr. Miura reports grants from NIH/NIGMS, during the conduct of the study.

References

    1. Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med. 2015;372:835–45. - PMC - PubMed
    1. Fairchok MP, Martin ET, Chambers S, Kuypers J, Behrens M, Braun LE, et al. Epidemiology of viral respiratory tract infections in a prospective cohort of infants and toddlers attending daycare. J Clin Virol. 2010;49:16–20. - PMC - PubMed
    1. Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2010;23:74–98. - PMC - PubMed
    1. Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016;38:471–82. - PMC - PubMed
    1. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–39. - PMC - PubMed

LinkOut - more resources