Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar;26(3):1155-1169.
doi: 10.1111/gcb.14862. Epub 2019 Nov 2.

Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity

Affiliations

Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity

Stefan Engels et al. Glob Chang Biol. 2020 Mar.

Abstract

Anthropogenic activities have led to a global decline in biodiversity, and monitoring studies indicate that both insect communities and wetland ecosystems are particularly affected. However, there is a need for long-term data (over centennial or millennial timescales) to better understand natural community dynamics and the processes that govern the observed trends. Chironomids (Insecta: Diptera: Chironomidae) are often the most abundant insects in lake ecosystems, sensitive to environmental change, and, because their larval exoskeleton head capsules preserve well in lake sediments, they provide a unique record of insect community dynamics through time. Here, we provide the results of a metadata analysis of chironomid diversity across a range of spatial and temporal scales. First, we analyse spatial trends in chironomid diversity using Northern Hemispheric data sets overall consisting of 837 lakes. Our results indicate that in most of our data sets, summer temperature (Tjul ) is strongly associated with spatial trends in modern-day chironomid diversity. We observe a strong increase in chironomid alpha diversity with increasing Tjul in regions with present-day Tjul between 2.5 and 14°C. In some areas with Tjul > 14°C, chironomid diversity stabilizes or declines. Second, we demonstrate that the direction and amplitude of change in alpha diversity in a compilation of subfossil chironomid records spanning the last glacial-interglacial transition (~15,000-11,000 years ago) are similar to those observed in our modern data. A compilation of Holocene records shows that during phases when the amplitude of temperature change was small, site-specific factors had a greater influence on the chironomid fauna obscuring the chironomid diversity-temperature relationship. Our results imply expected overall chironomid diversity increases in colder regions such as the Arctic under sustained global warming, but with complex and not necessarily predictable responses for individual sites.

Keywords: Arctic; Quaternary; biodiversity; climate warming; freshwater ecosystems; insects; palaeoecology.

PubMed Disclaimer

References

REFERENCES

    1. Andrén, E., Klimaschewski, A., Self, A. E., St. Amour, N., Andreev, A. A., Bennett, K. D., … Hammarlund, D. (2015). Holocene climate and environmental change in north-eastern Kamchatka (Russian Far East). Global and Planetary Change, 134, 41-54. https://doi.org/10.1016/j.gloplacha.2015.02.013
    1. Antonsson, K., Brooks, S. J., Seppä, H., Telford, R. J., & Birks, H. J. B. (2006). Quantitative palaeotemperature records inferred from fossil pollen and chironomid assemblages from Lake Gilltjarnen, northern central Sweden. Journal of Quaternary Science, 21, 831-841. https://doi.org/10.1002/jqs.1004
    1. Armitage, P. D., Cranston, P. S., & Pinder, L. C. V. (1995). The Chironomidae: Biology and ecology of non-biting midges. London, UK: Chapman and Hall.
    1. Axford, Y., Briner, J. P., Francis, D. R., Miller, G. H., Walker, I. R., & Wolfe, A. P. (2009). Chironomids record terrestrial temperature changes throughout Arctic interglacials of the past 200,000 yr. Geological Society of America Bulletin, 123, 1275-1287. https://doi.org/10.1130/B30329.1
    1. Bartlein, P. J., Edwards, M. E., Hostetler, S. W., Shafer, S. L., Anderson, P. M., Brubaker, L. B., & Lozhkin, A. V. (2015). Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes. Climate of the Past, 11, 873-932. https://doi.org/10.5194/cp-11-1197-2015

Publication types

LinkOut - more resources