Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 1;18(11):3955-3966.
doi: 10.1021/acs.jproteome.9b00410. Epub 2019 Oct 23.

Novel Mechanistic Insights into Bacterial Fluoroquinolone Resistance

Affiliations

Novel Mechanistic Insights into Bacterial Fluoroquinolone Resistance

Gao-Fei Du et al. J Proteome Res. .

Abstract

Advancements in studies on the evolutionary mechanisms underlying bacterial antibiotic resistance are unclear. This study aimed to investigate the evolutionary mechanism underlying bacterial antibiotic resistance using isobaric tags for relative and absolute quantitation-based quantitative proteomics along with functional validation. Quantitative analysis revealed 101, 325, and 428 differentially expressed proteins (DEPs) at three drug resistance levels (low-R, 0.2 μg/mL; medium-R, 5 μg/mL; high-R, 15 μg/mL). Continuous adjustment of metabolic patterns to enhance nucleotide synthesis and energy generation may underlie evolution. Indeed, nucleotide levels were elevated and strengthened ciprofloxacin resistance. Quorum sensing (QS) genes were upregulated in the early growth phase, thus potentially improving survival. Further, a thicker cell wall potentially serves as a stronger barrier and reduces drug permeation. The aforementioned three drug resistance levels displayed continuity and differences; the low-resistant level displayed no prominent mechanism; medium, a more focused change in nucleotide metabolism; and high, a thorough evolution to a complete systematic mechanism with higher adenosine 5'-triphosphate levels, serving as a defense mechanism for reducing drug-induced stress. Thus, gradual increments in nucleotide synthesis, energy synthesis, cell wall synthesis, QS, and biofilm formation may direct the evolution of bacterial resistance.

Keywords: ciprofloxacin; evolution; resistance.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources