Topoisomerases and cancer chemotherapy: recent advances and unanswered questions
- PMID: 31602296
- PMCID: PMC6774054
- DOI: 10.12688/f1000research.20201.1
Topoisomerases and cancer chemotherapy: recent advances and unanswered questions
Abstract
DNA topoisomerases are enzymes that catalyze changes in the torsional and flexural strain of DNA molecules. Earlier studies implicated these enzymes in a variety of processes in both prokaryotes and eukaryotes, including DNA replication, transcription, recombination, and chromosome segregation. Studies performed over the past 3 years have provided new insight into the roles of various topoisomerases in maintaining eukaryotic chromosome structure and facilitating the decatenation of daughter chromosomes at cell division. In addition, recent studies have demonstrated that the incorporation of ribonucleotides into DNA results in trapping of topoisomerase I (TOP1)-DNA covalent complexes during aborted ribonucleotide removal. Importantly, such trapped TOP1-DNA covalent complexes, formed either during ribonucleotide removal or as a consequence of drug action, activate several repair processes, including processes involving the recently described nuclear proteases SPARTAN and GCNA-1. A variety of new TOP1 inhibitors and formulations, including antibody-drug conjugates and PEGylated complexes, exert their anticancer effects by also trapping these TOP1-DNA covalent complexes. Here we review recent developments and identify further questions raised by these new findings.
Keywords: DNA supercoiling; DNA-activated protease; DNA-protein crosslink; chromatin organization; topoisomerase poison.
Copyright: © 2019 Bjornsti MA and Kaufmann SH.
Conflict of interest statement
Competing interests: Dr. Kaufmann indicates that he is the named co-inventor on a patent held by Mayo Clinic regarding the use of antibodies to TOPccs as theranostic reagents. Dr Bjornsti declared that she has no competing interests. No competing interests were disclosed.No competing interests were disclosed.No competing interests were disclosed.
Figures
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
