Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 5;53(21):12257-12268.
doi: 10.1021/acs.est.9b04481. Epub 2019 Oct 25.

Application of Nontarget High Resolution Mass Spectrometry Data to Quantitative Source Apportionment

Affiliations

Application of Nontarget High Resolution Mass Spectrometry Data to Quantitative Source Apportionment

Katherine T Peter et al. Environ Sci Technol. .

Abstract

High resolution mass spectrometry (HRMS) analyses provide expansive chemical characterizations of environmental samples. To date, most research efforts have developed tools to expedite labor- and time-intensive contaminant identification efforts. However, even without chemical identity, the richness of nontarget HRMS data sets represents a significant opportunity to chemically differentiate samples and delineate source contributions. To develop this potential, we evaluated the use of unidentified HRMS detections to define sample uniqueness and provide additional statistical resolution for quantitative source apportionment, overcoming a critical limitation of existing approaches based on targeted contaminants. By creating a series of sample mixtures that mimic pollution sources in a representative watershed, we assessed the fidelity of HRMS source fingerprints during dilution and mixing. This approach isolated 8-447 nontarget compounds per sample for source apportionment and yielded accurate source concentration estimates (between 0.82 and 1.4-fold of actual values), even in multisource systems with <1% source contributions. Furthermore, we mined the nontarget data to identify five source-specific chemical end-members amenable to apportionment. While additional development studies are needed to fully evaluate the myriad factors affecting method accuracy and capabilities, this study provides a conceptual foundation for novel applications of nontarget HRMS data to confidently distinguish and quantify source impacts in complex systems.

PubMed Disclaimer

MeSH terms

LinkOut - more resources