Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 19;58(52):18918-18922.
doi: 10.1002/anie.201912132. Epub 2019 Nov 7.

Accessing 1,2-Substituted Cyclobutanes through 1,2-Azaborine Photoisomerization

Affiliations

Accessing 1,2-Substituted Cyclobutanes through 1,2-Azaborine Photoisomerization

Zachary X Giustra et al. Angew Chem Int Ed Engl. .

Abstract

We provide a seminal example of the utility of the 1,2-azaborine motif as a 4C+1N+1B synthon in organic synthesis. Specifically, conditions for the practically scalable photoisomerization of 1,2-azaborine in a flow reactor are reported that furnish aminoborylated cyclobutane derivatives. The C-B bonds could also be functionalized to furnish a diverse set of highly substituted cyclobutanes.

Keywords: boron-nitrogen heterocycles; flow chemistry; photochemistry; small ring systems; valence isomerization.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest

The authors declare no conflict of interest.

Figures

Scheme 1.
Scheme 1.
Developing the 1,2-azaborine motif as a 4C+1N+1B synthon in organic synthesis.
Scheme 2.
Scheme 2.
Examples of heterobicyclic precursors to isolated all-carbon four-membered rings (top) and proposed general sequence leading from 1,2-azaborine photoisomer 1 to 1,2-disubstituted cyclobutanes (bottom).
Scheme 3.
Scheme 3.
Flow photoisomerization of 1,2-azaborine 2. OtAm = tert-amyloxy.
Scheme 4.
Scheme 4.
Sequential isomerization/hydrogenation of 2 to azaborabicyclohexane 4 and subsequent ring opening to form aminoborylated cyclobutane 5.
Scheme 5.
Scheme 5.
Diastereoselective synthesis of hindered aminoborylated cyclobutanes. Isolated yields reported as the average of two runs.
Scheme 6.
Scheme 6.
Diastereoselective synthesis of hindered aminoborylated cyclobutanes. Isolated yields reported as the average of two runs.
Scheme 7.
Scheme 7.
Substrate scope of dual iridium photoredox/nickel-catalyzed cross-coupling of 7. Isolated yields reported as the average of two runs at 0.35 mmol scale. Values in parentheses are the trans:cis diastereomeric ratios of isolated material. [a] Using aryl iodide. [b] Isolated yield of trans diastereomer only. [c] From crude mixture 1H NMR analysis.
Scheme 8.
Scheme 8.
Additional C-B bond functionalizations.

References

    1. For recent reviews, see:

    2. Giustra ZX, Liu S-Y, J. Am. Chem. Soc 2018, 140, 1184–1194. - PMC - PubMed
    3. Bélanger-Chabot G, Braunschweig H, Roy DK, Eur. J. Inorg. Chem 2017, 4353–4368.
    4. McConnell CR, Liu S-Y, Chem. Soc. Rev 2019, 48, 3436–3453. - PMC - PubMed
    1. Abbey ER, Zakharov LN, Liu S-Y, J. Am. Chem. Soc 2008, 130, 7250–7252; - PubMed
    2. Marwitz AJV, Hatus MH, Zakharov LN, Liu S-Y, Angew. Chem. Int. Ed 2009, 48, 973–977; Angew. Chem. 2009, 121, 991–995; - PubMed
    3. Daly AM, Tanjaroon C, Marwitz AJV, Liu S-Y, Kukolich SG, J. Am. Chem. Soc 2010, 132, 5501–5506; - PubMed
    4. Campbell PG, Abbey ER, Neiner D, Grant DJ, Dixon DA, Liu S-Y, J. Am. Chem. Soc 2010, 132, 18048–18050; - PubMed
    5. Chrostowska A, Xu S, Lamm AN, Mazière A, Weber CD, Dargelos A, Baylère P, Graciaa A, Liu S-Y, J. Am. Chem. Soc 2012, 134, 10279–10285; - PMC - PubMed
    6. Murphy CJ, Baggett AW, Miller DP, Simpson S, Marcinkowski MD, Mattera MFG, Pronschinske A, Therrien A, Liriano ML, Zurek E, Liu S-Y, Sykes ECH, J. Phys. Chem. C 2015, 119, 14624–14631;
    7. Murphy CJ, Miller DP, Simpson S, Baggett A, Pronschinske A, Liriano ML, Therrien AJ, Enders A, Liu S-Y, Zurek E, Sykes ECH, J. Phys. Chem. C 2016, 120, 6020–6030.
    8. McConnell CR, Haeffner F, Baggett AW, Liu S-Y, J. Am. Chem. Soc 2019, 141, 9072–9078. - PMC - PubMed
    1. Knack DH, Marshall JL, Harlow GP, Dudzik A, Szaleniec M, Liu S-Y, Heider J, Angew. Chem. Int. Ed 2013, 52, 2599–2601; Angew. Chem. 2013, 125, 2660–2662; - PMC - PubMed
    2. Lee H, Fischer M, Shoichet BK, Liu S-Y, J. Am. Chem. Soc 2016, 138, 12021–12024; - PMC - PubMed
    3. Zhao P, Nettleton DO, Karki RG, Zécri FJ, Liu S-Y, ChemMedChem 2017, 12, 358–361; - PMC - PubMed
    4. Liu Y, Liu S-Y, Org. Biomol. Chem 2019, 17, 7002–7006. - PMC - PubMed
    1. For select examples involving monocyclic 1,2-azaborines, see:

    2. Taniguchi T, Yamaguchi S, Organometallics 2010, 29, 5732–5735;
    3. Marwitz AJV, Jenkins JT, Zakharov LN, Liu S-Y, Angew. Chem. Int. Ed 2010, 49, 7444–7447; Angew. Chem. Int. Ed. 2010, 122, 7606–7609; - PMC - PubMed
    4. Marwitz AJV, Lamm AN, Zakharov LN, Vasiliu M, Dixon DA, Liu S-Y, Chem. Sci 2012, 3, 825–829;
    5. Baggett AW, Vasiliu M, Li B, Dixon DA, Liu S-Y, J. Am. Chem. Soc 2015, 137, 5536–5541; - PubMed
    6. Braunschweig H, Celik MA, Hupp F, Krummenacher I, Mailänder L, Angew. Chem. Int. Ed 2015, 54, 6347–6351; Angew. Chem. 2015, 127, 6445–6449; - PubMed
    7. Baggett AW, Guo F, Li B, Liu S-Y, Jäkle F, Angew. Chem. Int. Ed 2015, 54, 11191–11195; Angew. Chem. 2015, 127, 11343–11347; - PubMed
    8. Wan W-M, Baggett AW, Cheng F, Lin H, Liu S-Y, Jäkle F, Chem. Commun 2016, 52, 13616–13619. - PubMed
    1. For reviews treating with polycyclic fused systems in this context, see:

    2. Bosdet MJD, Piers WE, Can. J. Chem 2009, 87, 8–29;
    3. Campbell PG, Marwitz AJV, Liu S-Y, Angew. Chem. Int. Ed 2012, 51, 6074–6092; Angew. Chem. 2012, 124, 6178–6197; - PMC - PubMed
    4. Wang X-Y, Wang J-Y, Pei J, Chem. Eur. J 2015, 21, 3528–3539; - PubMed
    5. Wang J-Y, Pei J, Chin. Chem. Lett 2016, 27, 1139–1146.

Publication types

MeSH terms

LinkOut - more resources