Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep 27;365(6460):1401-1405.
doi: 10.1126/science.aax6648.

Mapping human cell phenotypes to genotypes with single-cell genomics

Affiliations
Review

Mapping human cell phenotypes to genotypes with single-cell genomics

J Gray Camp et al. Science. .

Abstract

The cumulative activity of all of the body's cells, with their myriad interactions, life histories, and environmental experiences, gives rise to a condition that is distinctly human and specific to each individual. It is an enduring goal to catalog our human cell types, to understand how they develop, how they vary between individuals, and how they fail in disease. Single-cell genomics has revolutionized this endeavor because sequencing-based methods provide a means to quantitatively annotate cell states on the basis of high-information content and high-throughput measurements. Together with advances in stem cell biology and gene editing, we are in the midst of a fascinating journey to understand the cellular phenotypes that compose human bodies and how the human genome is used to build and maintain each cell. Here, we will review recent advances into how single-cell genomics is being used to develop personalized phenotyping strategies that cross subcellular, cellular, and tissue scales to link our genome to our cumulative cellular phenotypes.

PubMed Disclaimer

Publication types

LinkOut - more resources