Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 15:865:172731.
doi: 10.1016/j.ejphar.2019.172731. Epub 2019 Oct 11.

Flavonoids reduces lipopolysaccharide-induced release of inflammatory mediators in human bronchial epithelial cells: Structure-activity relationship

Affiliations

Flavonoids reduces lipopolysaccharide-induced release of inflammatory mediators in human bronchial epithelial cells: Structure-activity relationship

Peng Zhang et al. Eur J Pharmacol. .

Abstract

Flavonoids are polyphenolic compounds that are widely present in food and Chinese medicine. The aim of the present study was to identify the flavonoids with anti-inflammatory effects in the airway; and to determine the role of anti-oxidant and cyclic adenosine monophosphate (cAMP) in the anti-inflammatory effect. Human bronchial epithelial BEAS-2B cells were exposed to bacterial endotoxin lipopolysaccharide (LPS) in the absence or presence of different flavonoids, which are categorized according to their chemical structures in seven subclasses [anthocyanidins, chalcones, flavanes, flavanones, flavones, flavonols, isoflavones]. Among the 17 flavonoids tested, only apigenin (flavones), luteolin (flavones), daidzein (isoflavones) and genistein (isoflavones) reduced LPS-induced release of inflammatory cytokines/chemokines interleukin (IL)-6, IL-8 and monocyte chemoattractant protein-1 in BEAS-2B cells. Quercetin caused further increase in LPS-induced IL-6 and IL-8 levels. It alone significantly increased nuclear factor-kappa B (NF-κB) p65 activity and the cellular oxidative stress marker malondialdehyde (MDA) level in BEAS-2B cells. By contrast, apigenin and genistein reduced LPS-induced increases in nuclear NF-κB activity and MDA level. Apigenin and genistein, but not quercetin, increased the cAMP level in BEAS-2B cells, and the cell-permeable cAMP analogue, 8-Br-cAMP, inhibited LPS-induced increase of IL-8 level. These findings suggest that the presence of C5-OH, C7-OH, C2=C3 and C4=O functional groups in the flavonoids is associated with greater anti-inflammatory effect, while that of C3-OH or glycosylation group at the A-ring greatly decreased the anti-inflammatory effect. The anti-inflammatory effect of these flavonoids may be related to their anti-oxidant properties, and partly to their ability in increasing cAMP level.

Keywords: Bronchial epithelial cells; Cyclic adenosine monophosphate; Flavonoids; Inflammation; Lipopolysaccharide; Structure-activity relationships.

PubMed Disclaimer