Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct;574(7780):667-670.
doi: 10.1038/s41586-019-1648-7. Epub 2019 Oct 14.

Widespread global increase in intense lake phytoplankton blooms since the 1980s

Affiliations

Widespread global increase in intense lake phytoplankton blooms since the 1980s

Jeff C Ho et al. Nature. 2019 Oct.

Abstract

Freshwater blooms of phytoplankton affect public health and ecosystem services globally1,2. Harmful effects of such blooms occur when the intensity of a bloom is too high, or when toxin-producing phytoplankton species are present. Freshwater blooms result in economic losses of more than US$4 billion annually in the United States alone, primarily from harm to aquatic food production, recreation and tourism, and drinking-water supplies3. Studies that document bloom conditions in lakes have either focused only on individual or regional subsets of lakes4-6, or have been limited by a lack of long-term observations7-9. Here we use three decades of high-resolution Landsat 5 satellite imagery to investigate long-term trends in intense summertime near-surface phytoplankton blooms for 71 large lakes globally. We find that peak summertime bloom intensity has increased in most (68 per cent) of the lakes studied, revealing a global exacerbation of bloom conditions. Lakes that have experienced a significant (P < 0.1) decrease in bloom intensity are rare (8 per cent). The reason behind the increase in phytoplankton bloom intensity remains unclear, however, as temporal trends do not track consistently with temperature, precipitation, fertilizer-use trends or other previously hypothesized drivers. We do find, however, that lakes with a decrease in bloom intensity warmed less compared to other lakes, suggesting that lake warming may already be counteracting management efforts to ameliorate eutrophication10,11. Our findings support calls for water quality management efforts to better account for the interactions between climate change and local hydrological conditions12,13.

PubMed Disclaimer

Comment in

References

    1. Pick, F. R. Blooming algae: a Canadian perspective on the rise of toxic cyanobacteria. Can. J. Fish. Aquat. Sci. 73, 1149–1158 (2016). - DOI
    1. Ndlela, L. L., Oberholster, P. J., Van Wyk, J. H. & Cheng, P. H. An overview of cyanobacterial bloom occurrences and research in Africa over the last decade. Harmful Algae 60, 11–26 (2016). - PubMed - DOI
    1. Kudela, R. M. et al. Harmful Algal Blooms. A Scientific Summary For Policy Makers (IOC/UNESCO, 2015).
    1. Hampton, S. E. et al. Sixty years of environmental change in the world’s largest freshwater lake – Lake Baikal, Siberia. Glob. Change Biol. 14, 1947–1958 (2008). - DOI
    1. Duan, H. et al. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol. 43, 3522–3528 (2009). - PubMed - DOI

Publication types

LinkOut - more resources